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1 Statement of Work

Short- and Long-term Effects in Prostate Cancer Survival: Analysis of Treatment Efficacy and

Risk Prediction
Alexander Tsodikov, Ph.D.

There has been no change in the statement of work. A breakdown below shows what has been
accomplished in the first 8 months of the project at the University of Utah and the portion of the
project to be completed at the University of California at Davis.

Tasks accomplished in the first 8 Months of the project at the University of Utah
Task 1. Develop model-building techniques (Months 1-4)
Task 2A. Develop estimation and hypothesis testing (Months 5-8)

(a) Develop point estimation
(b) Develop simulation algorithms

(c) Develop hypothesis testing
Tasks to be completed at the University of California at Davis
Task 2B. Develop estimation and hypothesis testing (Months 9-10)

(d) Develop software implementation

(e) Study models and methods by simulation
Task 3. Develop variable selection procedures (Months 11-13)
Task 4. Analyze data for significant effects (Months 14-18)

(a) Apply estimation, hypothesis testing and variable selection to MSKCC data and SEER
data.

(b) Identify a model for prostate cancer biochemical recurrence, prostate cancer specific sur-
vival, and overall survival using methodology and software developed in Tasks 1-4.

Task 5. Computer-intensive approaches to prognosis and validation (Months 19-24)

Alex Tsodikov, Ph.D. Date: October 31, 2003.
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2 Objectives

There has been no change in the project objectives. The specific aims of this project are
1. To provide a statistical model that reproduces the complex survival responses in prostate cancer.

2. To develop methodology for analysis of prognosis after treatment for prostate cancer taking into
account the long- and short-term effects of prognostic factors and treatment.

3. To develop statistical software implementing model-building, estimation, construction of prog-
nostic indices, conditional survival prognosis, and assessment of the quality of prognostic clas-
sifications based on the new models.

4. To apply the models and methodology to analyze post-treatment survival of patients with
prostate cancer using data from the Memorial Sloan Kettering Cancer Center, the Utah Cancer
Registry and the SEER database.

3 Introduction

The goal of this proposal is to investigate a novel approach to the analysis of post-treatment
survival of prostate cancer patients: the decomposition of the diversity of survival patterns into
short-term and long-term effects. We proposed to identify a model of prostate cancer survival in-
corporating long- and short-term effects of prognostic factors and treatment. Novel statistical tools
are being developed to make such models work for better prognosis of prostate cancer patients.
During the first 8 months of the project we focused on the development of algorithms for model
building, estimation, hypothesis testing and simulation reviewed in the following sections of this
progress report. Fragments of software implementation were also developed to illustrate the per-
formance of the novel statistical tools using Surveillance Epidemiology and End Results (SEER)
survival data by stage. With further developments in methodology and software planned in the
project, data analysis will be refined to include a broad range of models, explanatory variables
and variable selection techniques.

4 Estimation

4.1 Nonlinear Transformation Models (NTM)
4.1.1 PH mixture model

For a survival function G(t | B, z), where 3 are regression coeflicients, and z are covariates, consider
a PH mixture model
G(t]B,2) = E{F)"P? | 2}, (1)
where F is the baseline survival function, and U(83, z) is a nonnegative random variable whose
distribution depends on covariates and regression coefficients. This model can be considered a
compact generalization of the so-called PH frailty model, or a PH model with a random effect

G(t]z,2) = E{F(t)"®"}, 2)
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where 8 is a predictor, and V is a random variable independent of the covariates, considered
by Hougaard [1984], Klein [1992], Nielsen et al. [1992] and many other authors, for different
distributions of V. Some authors considered specific frailty variables dependent on covariates, for
example, Wassel and Moeschberger [1993], Clayton and Cuzick [1985]. Obviously, when V in (2)
is allowed to depend on covariates, the model families (1) and (2) are equivalent.

We can make the following important observations about the class of PH mixture models (1):

e The survival function (1) is built by composition
G(t]B,2z) = (yo F)(t|B, 2), ®3)

where v(z | 8, z) is the moment generating function of U.

e The moment generating function y(z|-) is a distribution function in z with the support on
[0, 1]. If the distribution of U is specified parametrically, y is a parametric regression model on
[0, 1].

e The fact that the range and the support of v are the same allows one to build compositions
of an arbitrary number of 7s. One of the technical results we obtained is that the class of PH
mixture models is closed with respect to such compositions.

These observations are used to generalize the PH mixture family into the NTM family (Section
4.1.2) and to develop the composition technique (Sections 5, 5.2) compatible with the QEM
estimation procedure (Section 4.2).

We established the following key property of the PH mixture model [Tsodikov, 2003].

Proposition 4.1 Suppose, we have an observation (t, z,c) sampled from the PH mixture model
under independent censoring, where t is an observed survival time and c is a censoring indicator
(c =0 if t is a censored survival time, and ¢ = 1 if t is a failure). Then, under the PH mizture
model (1),

e the conditional expectation of U, given the observed event (t, z,c) is given by
E{U() |t c} = (@0 F)(t]-,c) =O[F()],d],
where the function © is given by
Y (] )
Ol
where ¥ (z|-) = 8%y(z|-)/8z°, ¢ =0,1,..., YO (z|") = +(z]").

Olz|d=c+z (4)

o The function © [z |-, c] is nondecreasing in © for any ¢ =0, 1.

The nondecreasing character of the function © in the above statement is quite natural. The
longer the subject stays event—free, the lower the subject’s posterior risk, represented by ©. So
©{F(t)]-,c} must be a nonincreasing function of ¢ for both failure (¢ = 1) and censoring (¢ = 0)
events. Since the survival function F'(¢) is nonincreasing in ¢, ©(z | -, ¢) must be nondecreasing in z.
It is interesting to note that the population hazard function for a heterogeneous population under
the PH mixture model is expressed as A(t| z) = ©{F(¢)|-,0}h(t), where h is the hazard function
corresponding to F. Even if h(t) is increasing, the observed population hazard function may be
a decreasing one through the decreasing behavior of ©{F'(¢)|-,0} with time. This observation
represents a selection effect of the risk set becoming “healthier” with time, as frail individuals
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leave the population. This effect was discovered and extensively studied in demography [Vaupel
et al., 1979] in the context of misinterpretation of mortality trends.

4.1.2 Nonlinear Transformation Models

In Section 4.1.1 we considered semiparametric survival models of the form
G(t]) =E{F®)"0| -} = (yo F)(t]"),
where v is a moment generating function of a nonnegative random variable U. We also noticed

that y(z|-) is a distribution function in z € [0, 1] with the range contained in the same interval of
[0,1]. This brings us to the following natural generalization of the PH mixture family of models.

Definition 4.1

Let y(z| B, z) be a parametrically specified distribution function with the z-domain of [0,1]. Let
F(t) be a nonparametrically specified baseline survival function. A semiparametric regression sur-
vival model is called a Nonlinear Transformation Model if its survival function can be represented

in the form

G(t|B,z) =v{F(t)|B,2z} = (yo F)(t| B, 2). (5)
Functions v will be called NTM-generating functions.
The class (5) was introduced in [Tsodikov, 2003], where universal estimation algorithms for the
NTM class were developed (see Section 4.2). The key requirement that ensures monotonicity and
convergence of the estimation algorithms of Section 4.2 is that of nondecreasing ©, where © is
defined in (4). Now that we no longer use the concept of frailty in the definition of NTM, ©(F'| -, c)
becomes a surrogate of the posterior risk such that its basic property of nondecreasing ©(z |-, c)
is preserved. For these reasons, we will restrict the family of NTM-generating functions to those

with nondecreasing ©.
The class of NTM includes the class of linear transformation models [Cheng et al., 1995, 1997]

logv(T|z) = —logb(z) + ¢, (6)
where T is the failure time, € is the random error with the distribution y, and v is some unspecified
strictly increasing function. For the exponential predictor 8(3,z) = exp(8y + 8" 2), the model
assumes a linear form in covariates and transformed response. The connection between LTM, the
PH model, the PO model, and binary regression models was discussed in [Doksum and Gasko,
1990]. After a little algebra, a linear transformation model can be represented as an NTM with
the NTM-generating function

v(z|B,z) = p{logb(B, ) + q(x)} (7)
where p is a parametrically specified tail function (=1-distribution function), and ¢ is an inverse
tail function. It is convenient to specify g as the inverse of p, then # = 1 corresponds to the
baseline y(z|) = .

Presentation of a semiparametric model in terms of an NTM-generating function 7 is not
unique, as there is a number of ways to represent an arbitrary monotonic function. Indeed,
expression (7) suggests that a transformation p{q(F)}, where F' is an arbitrary survival function,
is again an arbitrary survival function. In other words, the family of functions

Y(@[)=(vopeq)z|-) (8)
represents the same semiparametric model for any fixed p and ¢ as defined above. The optimal
choice of p and ¢ to represent a semiparametric model in such a way as to achieve fastest conver-
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gence or to satisfy the assumption of nondecreasing © represents an interesting issue for future
research.

It should be stressed that the issue of non-uniqueness of the representation of an NTM in
terms of an NTM-generating function should not be confused with the issue of identiability of
the model. For example, the Cox model can be represented as v(z|0(z)) = z%® (proper form)
or v(z|0(z)) = exp{—0(z)(1 — z)} (improper form, PH model with cure). In both models rela-
tive effects represented by regression coefficients entering the partial likelihood are identical and
identifiable if predictor 6 is coded correctly.

4.2 Quasi-EM Algorithm (QEM)

This section reviews a universal procedure (QEM algorithm) designed in [Tsodikov, 2003] to fit
NTM models.

Let ¢;, 7 = 1,...,n be a set of times, arranged in increasing order, ¢, := 00. Associated with
each t; is a set of subjects D; with covariates z;;, j € D; who fail at ¢;, and a similar set of subjects
C; with covariates z;;, j € C; who are censored at ¢;. The observed event &; for the subject 4j
is a triple (t;, 2, ¢ij), where c is a censoring indicator, ¢ = 1 if failure, ¢ = 0 if right censored.
For any function A(t), let A; = A(t;), AA; = |A(t;) — A(t; — 0)|. A step-wise function H can be
characterized by two vectors AH = (AHy,...,AH,)" and t = (t1,...,t,)". With this notation,
under an NT model and noninformative censoring, the likelihood of survival data takes the form

£=7 Dilog[AH)+Y " Y logd(F;|B, 2 ci), 9)

i=1 i=1 jeC;UD;
where
"9(:6 l % C) = xc’)’(C){x I '}7
and D; is the number of failures associated with ¢;. We use the profile likelihood approach to
maximize £. The profile likelihood is defined as a supremum of the full likelihood taken over the

nonparametric part of the model
£,:(8) = max (8, ). (10)

The algorithm follows the straightforward nested procedure:

e Maximize £,.(8) by a conventional nonlinear programming method, for example, the Powell
method [Press et al., 1994].

e For any 3 as demanded in the above maximization procedure, solve the problem (10).

Inference based on the profile likelihood is not straightforward, as the usual theory of MLE does
not apply to unlimited dimension. Important results have been obtained regarding theoretical
justification for the nonparametric maximum likelihood estimation (NPMLE) method and the
profile likelihood for semiparametric models [Murphy, 2000, van der Vaart, 1998, Murphy and
van der Vaart, 1997]. It was shown that profile likelihoods with nuisance estimated out behave
like ordinary likelihoods under some conditions. In particular, these results apply to the PH model,
the proportional odds (PO) model [Murphy, 2000, Murphy et al., 1997] and the PH frailty model
[Murphy, 1994, 1995], and presumably to most other models.

The following method (QEM) is used to obtain the profile likelihood and solve (10):

AH(k+1) — Dm
m & )
2 ijeRm G(Fi( ) | Bsj» 235, Cij)

(11)
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where k counts iterations.

It can be shown that if © is nondecreasing, each update of H using (11) strictly improves the
likelihood, given B. This guarantees convergence of the sequence of likelihood values £ {ﬁ, H (’“)}
to the profile likelihood under fairly general conditions.

Under a PH mixture model, the procedure (11) is an EM algorithm based on imputation
of the missing predictor U in the Nelson—-Aalen-Estimator by its conditional expectation, given
observed data, represented by ©(F|f3,2,c). Under an NT model, the procedure works as a
Quasi-EM algorithm without the missing-data interpretation. It can be shown [Tsodikov, 2003]
that imputation in the QEM procedure is accomplished using the so-called quasi-expectation
operator, QE, which generalizes mathematical expectation operator on a restricted class of basis
functions in a way that its linearity and second-order differentiation properties, as well as the
Jensen inequality are preserved.

5 Model Building

5.1 Composition for PH mixture models

The idea to use compounding to build particular extended families of frailty models is not new.
For example, Aalen [1992] used a compound Poisson distribution to extend a class of frailty models
by Hougaard [1984].

Consider the following general compounding techniques for the PH mixture model. If v is a
nonnegative discrete random variable with the moment generating function v4(z) = E {z"}, and &
are i.i.d. copies of another nonnegative random variable (independent of v) with the the moment
generating function v,(z) = E {zé }, and U is a compound random variable given by

U= Z §k7 (12)
k=1
then by the composition property of Laplace transform,
y(z) = E{a"} = (v 0 1) (). (13)

A large variety of semiparametric mixture models can be derived from (13). When 7p(z) corre-
sponds to a continuous random variable, the compound variable U is no longer of the simple form
(12). However, the composition 7y o 7, still corresponds to a PH mixture model with some frailty
random variable U, as given by the following proposition.

Proposition 5.1 Composition for mizture models.

Let vp and v, be some two mizture models vo(z|-) = E(z” |-), 1(z|-) = E(z*|-), where v and £ are
some independent nonnegative random variables. Let vy = ~yg o vy, be the compound model. Then
v 18 also a mizture model, meaning that there exists a nonnegative random variable U such that
v(z|) = E=Y]).

Proof. By the Bernstein theorem (Feller [1971]), we need to prove that y(e™®|-) = (75 © v,)(e™*|")
is a completely monotonic function. Let ¢.(s) = v.(e™*|-). We have ¢(s) = 9o {—log,(s)}. For
any functions £ and (, the composition £ o ¢ is completely monotonic if € is completely monotonic,
¢ > 0, and ¢’ is completely monotonic. Applied to the functions 1, this means that we have to
prove that for any completely monotonic function 1 (s) > 0, the function f(s) = {~log¥(s)} is
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completely monotonic. It can be proved by induction that

n+1 (k)
1)) (g) = VRO
( 1) f (S) - kglank( 1) ¢n_k+2(s)’
where ag1 = 1, @ni11 = Gn1, Gngig = Gnk(n — kK +2) + a1, k= 2,...,n+ 1, Gur1n42 = Gnns1,

n=0,1,---. From the above equations it follows that a,; > 0 for any n, k. Also, ¥(s) >0, s > 0,
and since v is completely monotonic, (—1)*¥4*)(s) > 0. Therefore, (—1)"f™(s) > 0, s > 0. End
of proof.

As a result of the above observations, we have a tool to build hierarchical regression models
using composition of moment generating functions v = 7y o y,. The fact that the class of PH
mixture models is closed with respect to such composition allows us to use an EM-approach to fit
compound mixture models.

Consider a model composed of the PH and the PO models. Take the moment generating
function n()

of the exponential distribution with parameter n(f3, z), corresponding to the PO model. Take
another moment generating function

Yo(z!-) = 2%,
corresponding to the PH model with predictor 6(3, z). As a result of the composition v = 7 0,
we have the so-called T'frailty model

NERYC
G100 = {5 s (19

Indeed, ¥(s) = v(e™®|-) = [n(:)/{n(-) + s}]°") is the Laplace transform of a I-distribution with
scale parameter 7 and shape parameter 6, and we have the interpretation of the compound model
(14) as a I'frailty model.

It is assumed that predictors depend on B3, z via the form Sy + 8%z, where §, stands for the
intercept term of the predictor. Also, different predictors have independent sets of regression
coefficients § = (819 + B12), n = (B0 + B32). To avoid overparameterization of the I-frailty
model, the intercept in 8 is fixed at zero B;p = 0. With the above conventions, a test for 3, =0
is a test for the PO assumption, while a test for 3, = 0 is a test for the PH assumption. Setting
3, = B, = 0 corresponds to a test of homogeneity.

5.2 Composition for NTMs

We extended the composition techniques for the PH mixture model (Section 5.1) to the NTM
class. The composition technique offers a simple way to build hierarchical families of models that
combine the features of simpler models. Specifically, if 79 and -, are two different NT models with
predictors 6, and 7, respectively, then

v(z]-) = (Yo 0 ) (=) (15)
is a new semiparametric model with two predictors 6 and 7. If vy(z|-) = z for some value of 6
(usually for # = 1), then the model (15) includes models vy and 7, as nested special cases. The
fact that NTM—generating functions y(z | -) are all defined on z € [0, 1] and have the range in the
same interval allows us to compose as complex a hierarchical model as needed. In particular, a
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composition of the PH model in the improper form

7(2l0(2)) = exp{—0(z)(1 — z)} (16)
with the one in the proper form )
m(zln(2)) = 2™ (17)
results in the so-called PHPH model incorporating long- and short-term survival effects
G(t]z) = exp [-60(z) {1 — [F(t)]"(2)}]. (18)

We have shown that operation of composition preserves the key property of nondecreasing ©,
and the EM-like estimation algorithms of Section 4.2 remain applicable within the hierarchical
family.

Proposition 5.2 Composition.
Let v and v, be some two NTM-generating functions, each satisfying the assumption of nonde-
creasing ©, where © is given by (4), and let v = 75 0y, be the compound function (compositions
are taken with respect to z). Let ©, be the ©—function (4) corresponding to v,, a = 8,7, and to
the compound function vy, if a is blank. Then (A)

Oz|-c) = @,,(.’B | K 0) {(90 ° '777) (z]-c) ~ C} + c@n(:v | '76)1 (19)
where ¢ = 0,1 and (© ov) (z |-, ) is understood as O{y(z|-)|-,c}; and
(B) The function © (4) derived from the compound NTM-generating function v is nondecreasing
in z as required for monotonicity and convergence of the estimation algorithms (See Section 4.2).
Proof. Proof of first statement is a straightforward exercise in differentiation of compound func-
tions entering (4). Validity of second statement follows from (19) upon observation that all com-
ponents of (19) are nondecreasing functions in z. End of proof.

Equation (19) simplifies derivation of © for the compound models through direct use of Os
corresponding to submodels participating in the composition.

Consider another example of building hierarchical models using composition. Using the com-
position framework, the Dabrowska and Doksum model [Dabrowska and Doksum, 1988] can be
represented through a composition v = 71/, 0 79 0 7,, where 7y is an NTM-generating function
for the PO model, 7, and 7/, correspond to the PH model, and a is a scalar, independent of
covariates

7($|')={1%}E’ a>0. (20)

The above model becomes the PO model if @ = 1, and it becomes the PH model in the limit as
a — 0. With the above model, the PH assumption corresponds to the border of the parametric
space (a = 0) and, for this reason, we prefer to use the I'-frailty model (14) in this paper to
illustrate the methodology.

The I'frailty model (14) can be built as a composition of the NTM-generating functions

Yo(z|-) = 2°0
and
_ . n()
")/-,,(.’L‘l ) - T]() — IOgCL‘

corresponding to the PH and the PO models, respectively, without having to work with their
frailty underpinnings. Using (4), we derive the ©-functions corresponding to the two submodels:

e PH model: ©y(z|-,c) = 6(-),
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e PO model: ©,(z|-,c) = (c+ 1){n(:) —logz}~".

Next, the compound © is derived from (19) using the above expressions for the submodels:
6(-)+c

016 = -3 o (21)

6 Hypotheses Testing

It should be noted that the problem of deriving a variance estimator with the QEM procedure is
quite different from the one with the EM algorithm. The problem with the EM-based information
matrix is that the likelihood is unavailable in a closed form, or it is difficult to differentiate. In our
situation, however, the problem is formulated without use of missing data, and the likelihood is a
quite simple, easily differentiable function. So, it is not a problem to write down the full model
information matrix. The problem is that the number of parameters of a semiparametric model is
potentially unlimited. For this reason, obtaining the inverse of the full information matrix can be
computationally prohibitive.

We have developed a numerically efficient procedure to overcome the problem using the profile
information matrix ) 8¢, {B)

Igg= ~3B0F"

where £, is the profile likelihood (10) obtained by searching for the fixed point AH*(3) of (11).
Implicit differentiation of the profile likelihood yields

(22)

. OAH"\" OAH* (0AH*\" OAH*
where >
Tab = ~5a067

for any two vectors @ and b. To get a variance estimator for regression coefficients 3, only a small
(dimB x dimpB) profile matrix needs to be inverted. The downside of (23) is that the Jacobian
matrix OAH* /03 is generally unavailable in a closed form. The success of the above approach is
determined by the existence of an efficient numerical method to compute OAH*/03. Generally,
computation of JAH* /93 is as difficult as taking the inverse of the original full model information
matrix (O(n®) operations required), and this derivation defeats the purpose.

However, if the functional ¥(H,t|-) depends on (H,t) only through H(t), which corresponds to
the NT models (Section 4.1.2), the system of linear equations for 9AH™ /98 acquires a triangular
form, and it can be solved recurrently. Indeed, with an NT model we have

or Dy,
AT, A, 2, OB e) (24)
where © is given by (4). Diferentiating the above score equation with respect to AH,,, we get
the elements of the I, gy o gy information matrix

82 Dy
_aAHkaAHm - AH,%akm + ijERE(k . Q(F'LIB’ 235y c’ij)a
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where 0, = 1, if kK = m and 6, = 0 otherwise, and

Qsl 9 = gt = {8(alc) = ¢} x {Oal ) ~ Ol e+ 1)} (29

Consider the self consistency equation (11) at the fixed point AH*(3). Implicit differentiation of
the likelihood after a little algebra gives the following system of equations

OHY_, (8H,’; I OH} )
=C +Ar+) B ; 26
55 ~C\ap TP 0
where 00(F¥|B, zij, cij)

Ak = ’
i]%:zk 8ﬂ
B;= >, Q(F}|B,zij cij),

FECUD;
and 2
(AH;)
D,
The system of equations (26) is linear in dH} /93 with an upper triangular matrix. Such systems
can be solved recurrently. On substitution of the above solutions into (23), the profile information
matrix for an NT model is obtained.
We are working on software implementation and numerical experiments with the above method.
Also, we have implemented a pragmatic numerical approach similar to the one proposed in
reference [Nielsen et al., 1992]. In the course of maximization of the profile likelihood with respect
to regression coefficients 3, a dense sample of the profile likelihood surface is generated in the
vicinity of a stationary point. The curvature of the profile likelihood surface at the stationary
point can be estimated by fitting a quadratic function to some domain around the point, using
least squares. For example, the domain can be limited to points that cannot be rejected using
the likelihood ratio test (applied informally). Our numerical experiments have shown that this
method is unstable for models with more than one or two covariates. Also, it is much less efficient
computationally compared to the one based on implicit differentiation of the profile likelihood.

Cy =

7 Preliminary Data Analysis

As an example, we used data from the National Cancer Institutes Surveillance Epidemiology
and End Results (SEER) program. Using the publicly available SEER database, 11621 cases of
primary prostate cancer diagnosed in the state of Utah between 1988 and 1999 were identified. The
following selection criteria were applied to a total of 19819 Utah-cases registered in the database:
valid positive survival time, valid stage of the disease, age> 18 years. Prostate cancer specific

survival was analyzed by stage of the disease (localized /regional vs. distant). For the definition

of stages as well as for other details of the data we refer the reader to SEER documentation
http://seer.cancer.gov/.

Three models PH, PO, and I'frailty model with 2z representing two groups corresponding to
localized/regional stage (10765 cases) and distant stage (856 cases), respectively, were fitted using
the profile QEM algorithm. Estimates of model parameters are given in Table 1.

Observed (Kaplan—Meier) and expected model-based estimates of the survival functions by
group as well as diagnostic plots are shown in Figure 1.
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Figure 1: Observed vs. expected plots corresponding to the PH and the PO model fitted to the
prostate cancer data. Thin and thick lines correspond to observed and expected plots, respectively.

It is evident from the comparison of observed and expected survival functions that the PO
model provides better fit to the data than the PH model. The I'frailty model provides the
fit (not shown) which is very similar to the PO model. We test the model assumptions using
the hierarchical structure of the I'frailty model. Using the likelihood ratio test with the profile
likelihood, the PO assumption could not be rejected (p=0.712).

8 Key Research Accomplishments

Simmarizing, the key research accomplishments of the first 8 months period of the project are:

1. Development of the class of Nonlinear Transformation Models (NTM) and associated QEM
estimation procedures and their computer implementation;

2. Development of composition technique as a tool for model building. We established that the
class of PH mixture models and NTM is closed with respect to compositions of so-called model
generating functions. Moreover, we established that QEM estimation procedures are applicable
to any model built using this technique;

3. A numerically efficient algorithm has been developed for estimation of the inverse of profile
information matrix for NTM that avoids taking inverse of the full information matrix of the
semiparametric model. This algorithm will be used for testing hypotheses, variable selection
and estimation of confidence intervals.
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Model | Parameter | Point— Confidence | p-Value Test
estimate interval
PH BpH 2.734 (2.611,2.858) | <0.0001 | Homogeneity
PO Bpo -3.251 | (-3.416,-3.086) | <0.0001 | Homogeneity
BpH 0.071 | (-0.310,0.452) | 0.712 | Bpg =0, PO
Ifrailty Bpo -3.149 | (-3.714,-2.583) | <0.0001 | Bpo =0, PH
- - - <0.0001 | Homogeneity

Table 1: Parameter estimation and hypothesis testing for prostate cancer data based on PH, PO,
and I'frailty models. Regression coefficients Bpy and Bpg measure the disadvantage of being in
the distant stage relative to local/regional stage as represented by log odds ratio and log hazards
ratio, respectively. Negative fpg and positive Spy means worse survival.

9 Reportable Outcomes

9.1 Manuscripts

1. Tsodikov, A. (2003) Semiparametric models: A generalized self-consistency approach, Journal
of the Royal Statistical Society, Series B, Vol. 65, 759-774.

2. Tsodikov, A., Ibrahim, J.G., and Yakovlev, A.Y. (2003) Estimating Cure Rates from Survival
Data: An Alternative to Two-Component Mixture Models, Journal of the American Statistical
Association, (review paper) to appear in December 2003.

3. Boucher, K., Asselain, B., Tsodikov, A., Yakovlev, A. Semiparametric versus parametric regres-
sion analysis based on the Bounded Cumulative Hazard Model: An application to breast cancer
recurrence, In Semiparametric Models in Survival Analysis, Quality of Life and Reliability,
Birkhauser (invited paper), to appear.

9.2 Presentations

Tsodikov, A. (2003) Generalized Self-Consistency Methods for Cure Models, Joint Statistical
Meetings, Invited session on Cure Models. (invited), San Francisco, August 2003.

10 Conclusions

Most semiparametric survival models can be induced by frailties. Compounding the distribution
of frailty offers a way to build hierarchical families of semiparametric models that can be used to
test model assumptions and to reproduce complex patterns of covariate effects using more than
one predictor. A PH mixture model represents survival function G as a composition G = yo F,
where v is a moment generating function, and F' is a nonparametrically specified baseline survival
function. We note that hierarchical PH mixture models can be built using compositions of the form
G = y0...07,0F, where v; are moment generating functions for submodels. Mixture models can
be fit by an EM algorithm which is specified as repeated imputation of the missing frailty variable
using its conditional expectation, given observed event. We find that this conditional expectation
is represented as a composition © o F', where © is defined through first two derivatives of 4. The
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above framework is naturally generalized as the existence of frailty interpretation is required neither
for model building nor for model fitting. For the class of Nonlinear Transformation Models, we
formulate composition rules for v and © and develop the QEM generalization of the EM algorithm.

During the first phase of the project we developed a basic toolbox of analytic and algorithmic
tools for model building, model fitting and hypothesis testing. Fragments of software implemen-
tation were developed and used to demonstrate the utility and superior numerical performance of
these methods in real and simulated data.

During the second phase of the project we are planning to continue to build on the results
obtained so far extending the arsenal of methods to include variable selection and computer-
intensive methods. We will continue software implementation of these procedures under a common
shell, verification of the methods by simulations and their application to real prostate cancer data.
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Summary. In semiparametric models, the dimension d of the maximum hkehhood problem is
potentially unlimited. Conventional estimation methods generally behave like O(d/®). A new O(d)
estimation procedure is proposed for a large class of semiparametric models. Potentially unlim-
ited dimension is handled in a numerically efficient way through a Nelson—Aalen-like estimator.
Discussion of the new method is put in the context of recently developed minorization—manxi-
mization algorithms based on surrogate objective functions. The procedure for semiparametric
models is used to demonstrate three methods to construct a surrogate objective function: using
the difference of two concave functions, the EM way and the new quasi-EM (QEM) approach.
The QEM approach is based on a generalization of the EM-like construction of the surrogate
objective function so it does not depend on the missing data representation of the model. Like
the EM algorithm, the QEM method has a dual interpretation, a result of merging the idea of
surrogate maximization with the idea of imputation and self-consistency. The new approach is
compared with other possible approaches by using simulations and analysis of real data. The
proportional odds model is used as an example throughout the paper.

Keywords: EM algorithm; Frailty; Nonparametric maximum likelihood estimation; Profile
likelihood; Semiparametric models

1. Introduction

Potentially unlimited dimension has been the most critical deterrent to the use of maximum
likelihood estimation (MLE) in semiparametric regression models. In survival analysis, meth-
ods based on the partial likelihood (Cox, 1972) are specific to the proportional hazards (PH)
model and do not extend to other models. Straightforward Newton-type methods of maximiz-
ing the likelihood for the full model generally require O(d®) operations to solve the system of
score equations, where d is the number of model parameters. The principal part of the set of
d parameters in a semiparametric model is used to specify a stepwise function H which ap-
proaches a continuous ‘true’ H in probability, as d — oc. Although theoretically almost any
likelihood can be maximized by a Newton-type method, its high complexity makes the prob-
lem computationally difficult for large d. The development of general, stable and numerically
efficient algorithms for semiparametric MLE has been a long-standing problem (Fleming and
Lin, 2000). Such algorithms are the subject of this paper. The argument goes as follows. The
bottle-neck of a maximization algorithm for a semiparametric likelihood is the estimation of
H. Let ! be the log-likelihood of a semiparametric model, treated as a functional of H. Consider
a class of continuous semiparametric models with the log-likelihood of the form (informally)

[ =3 D/log{dH(®} + thlog{ﬁ(H, t12)}, ¢))
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where D, is the number of exact observations at ¢ (failures), z is a vector of covariates and
9> 0 is some functional of H. The basic assumption that contributes to equation (1) is that the
probability of failure in [t, 7 + dt] is proportional to dH(f), which is differentiability. To obtain
an estimator for H, we differentiate I with respect to the set of {dH(7)}. Informally, we arrive
at the so-called self-consistency equation

dH(r) = D: [ 6(H, 1), @
t

where @ is a functional representing a negative ‘derivative’ of log(). Since both sides of equation
(2) depend on H, an iterative procedure is required to make the equation self-consistent,

dHED () = DT/;G(HU:),ﬂZ), 3)

where k counts iterations. Iterative updating of H by using equation (3) is the basic idea behind
the algorithm. As we shall see, the above procedure is intimately linked to the EM algorithm
as used to fit certain PH frailty models in survival analysis (Oakes, 1989; Klein, 1992; Nielsen
etal ,1992). The EM algorithm handles H in an O(d) way through the use of the Nelson-Aalen—
Breslow estimator (Andersen et al., 1993) for the cumulative hazard H. This is made possible
as the M-step reduces to the PH model. However, a large amount of analytic work would be
required to specify an estimation procedure for a new non-PH model. Expectation at the E-step
may prove to be inaccessible in a closed form, and Monte Carlo extensions of the EM approach
are much less computationally attractive. Recently, an optimization transfer approach (Lange
et al., 2000) was proposed that allows us to construct EM-like procedures without the use of
missing data. For a target function I(x),x € R”, the minorization-maximization (MM) algo-
rithm (Lange et al., 2000) proceeds by construction of the so-called surrogate objective function
Q(x]y) such that Q(yly) =I(y), and Q(x|y) <I(y), for any x, to ensure monotonicity of the
procedure. Maximization of the target function [ proceeds iteratively as

x#®+D = arg m,?x{Q(x|x(k))}. 4

The MM algorithm converges in / and in x under fairly general conditions (Lange et al., 2000).
In the likelihood interpretation, the EM algorithm is a particular case of the MM algorithm.
Unfortunately, there is no automatic way to construct Q. The procedure (3) interpreted as an
MM algorithm is used to highlight three methods to construct a surrogate objective function:
using the difference of two concave functions, the EM way and a new quasi-EM (QEM) ap-
proach. These methods link the EM algorithm for frailty models and its modifications with
the MM algorithms. In the QEM approach, ‘E’ in the EM is replaced by the quasi-expectation
operator QE, which is not based on the concept of a random variable. The result is the so-
called QEM algorithm, which presents us with a recipe of generalizing an EM procedure into a
‘distribution-free’ one, representing a particular MM algorithm.

2. Profile likelihood approach

The problem of nonparametric maximum likelihood estimation (NPMLE) with the semipara-
metric model is to find estimates of regression coefficients 8 and an NPMLE estimate of H
such that they deliver the maximum of a suitably defined likelihood function ! = I(3, H). In this
paper we use a profile likelihood approach to maximize /. The profile likelihood is defined as a
supremum of the full likelihood taken over the nonparametric part of the model

lpr(ﬁ) - mgx{l(ﬁ, H)} (5)
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Assuming that we can find the global maximum of / with respect to H, given 3, we may write
the profile likelihood as an implicit function of 8

where H(B) is the solution of equation (5). Our algorithms will be designed following a straight-
forward nested procedure:

(a) maximize l,r(83) by a conventional non-linear programming method (e.g. a directions set
method);
(b) for any B as demanded in the above maximization procedure, solve problem (5).

As the number of parameters of a semiparametric model is potentially unlimited, obtaining
the inverse of the full information matrix can be computationally prohibitive. Therefore, we use
the profile information matrix

P o Bl B))
8.8 8,385T

to derive a standard error estimator for 8. In this paper we adopt a pragmatic numerical ap-
proach. In the course of maximization of the profile likelihood with respect to 3, a dense sample
of the profile likelihood surface is generated near a stationary point. The curvature of the profile
likelihood surface at the stationary point can be estimated by fitting a quadratic function to
some domain around the point by using least squares. For example, the domain can be lim-
ited to points that cannot be rejected by using the likelihood ratio test (applied informally).
Alternatively, a more sophisticated approach can be used based on implicit differentiation
of Iy

’lPhe rest of the paper will be devoted to constructing efficient NPMLE methods for obtaining
lpr, i.e. for maximizing [ with respect to H, given f3, as this is the crux of the matter.

Practically, inference based on the profile likelihood is similar to that based on the partial
likelihood for the PH model, which is quite convenient. Theoretically, however, inference based
on the profile likelihood is not straightforward, as the usual theory of MLE does not apply to
unlimited dimension. Important results have been obtained regarding a theoretical justification
for the NPMLE method and the profile likelihood for semiparametric models (Murphy, 2000;
van der Vaart, 1998; Murphy and van der Vaart, 1997). It was shown that profile likelihoods
with nuisance parameters estimated out behave like ordinary likelihoods under some conditions.
In particular, these results apply to the PH model, the proportional odds (PO) model (Murphy,
2000; Murphy et al., 1997) and the PH frailty model (Murphy, 1994, 1995), and presumably to
most other models.

Lett;,i=1,...,n, be a set of times, arranged in increasing order, and define £, 1 := 0. As-
sociated with each # is a set of individuals D; with time-independent covariates z;;, j € D;, who
fail at #, and a similar set of individuals C; with covariates z;;, j € C;, who are censored at .
The observed event &;; for the subject i is a triple (#;,;, c;j), where ¢ is a censoring indicator:
¢ =1 if failure; ¢ =0 if right censored. For any function A(r), let A; =A%), AA; =|A@) —
A(ti — 0)|. A stepwise function H can be characterized by two vectors AH = (AH),...,AH,)T
and t=(ty,...,1,)T. With this notation, the likelihood of survival data under non-informative
censoring takes the form

M

n n
I =73 Dilog(AH)+ ), >, log{¥(AH,|B,z;j,cij)}, ®)
i=1 i=1 jeCUD;
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where D; is the number of failures that are associated with #;, and the function ) will be specified
later for the class of non-linear transformation models (NTMs).

3. EM algorithm for a semiparametric model

For example, consider a PO model for the survival function G, given covariates z,

6(3,2)
0(B,2) + H()’

where 0 is a predictor and H is some nonparametrically specified base-line cumulative hazard.
The model is named after the PO property that for any two values of the predictor, §; and 6,,
with corresponding survival functions G;(#) = G(¢|6;),i = 1,2, the odds ratio

odds{G1(0} _ 2

odds{G.(0} ~ 6,
is a constant in ¢, where odds(a) = a/(1 — a).
This paper was inspired by the idea of representing a semiparametric model as a mixture
(frailty) model, and to use the EM algorithm to fit it. With this idea in mind, consider a PH
mixture model

G(B,n) = G{116(B,)} = ®

G(118,7) = E{F(®)UP-?|z}, (10)

where F = exp(— H) is the base-line survival function corresponding to H, and U = U(3,z) is
used to indicate that the distribution of random variable U depends on covariates and regression
coefficients. This model can be considered a compact expression for a family of so-called PH
frailty models, or PH models with random effects considered by Hougaard (1984), Klein (1992),
Nielsen et al. (1992), Wassel and Moeschberger (1993), Clayton and Cuzick (1985) and many
others, for different distributions of U, possibly dependent on covariates.

To construct the EM algorithm for a particular model (PO in the example), we represent it as
a PH mixture model (inverse transform), and then follow the usual logic of the EM algorithm
construction for frailty models, as for example in Nielsen ez al. (1992).

3.1. Inverse transform
We note that £(s|-) = E[exp{—s U(:)}] is the Laplace transform of U(-), and that for the PH
mixture model (10)

G(l) = L{H®)|} = L[~ log{F")}I].

From the latter equation and equation (9), we conclude that U for the PO model represents
exponential regression, as L£(s|-) = 8(-)/{6(-) + s} is the Laplace transform of an exponential
distribution with mean 67!,

3.2. Complete-data likelihood

With the PH mixture model (10), pretend that U is known for each subject ij, continuing the
notation of Section 2. The complete-data likelihood under non-informative right censoring
corresponds to the PH model with predictors U;;

n

la =3 {Di log(AH) - X Uini}- (11)

i=1 jeCiuD;
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3.3. E-step

Since the complete-data likelihood (11) is linear in missing data U j, the E-step reduces to impu-
tation of each U by the corresponding U, the conditional expectation of U, given the observed
event. Using the exponential distribution of U with mean ™!, after a little algebra, we obtain

/u F"(uh)°0 exp(—0u) du T(c + 2)6/(0 + H)+? ctl

- = , (2
/ Fiuh)fexp(~6uydu L€+ DO/E+HT 60,2+ HE) o

U=

where £ is the hazard function corresponding to H. A similar derivation of U for a gamma
frailty model can be found, for example, in Parner (1998).

3.4. M-step
Maximization of the complete-data likelihood (11) with respect to H, and with U;; imputed by
U; j» Tesults in the Nelson-Aalen estimator

AHln:Dm Z Ui_j, m=1,...,n,
ij€Rm

where R,, = {ij: j € D; UC;,i 2 m} is the set of subjects at risk just before 7,,.

3.5. EM procedure for the proportional odds model
Finally, for the PO model we have the iterative EM procedure

-1
, 1
AR = p L) AL N G m=1,...,n, (13)
" " ije;zm 6(8,2:)) + H{"

where k counts iterations.

3.6. Alternative derivation of procedure (13)

It is intriguing that we can formally derive procedure (13) as an immediate corollary of the
argument presented in Section 1. Indeed, using equation (9), we write the likelihood for the PO
model as

3 0(8,2i;)
E} og(AH;) jec%n_ og[ (60B,z)) + Hi}c,-jH] (14)

On differentiating equation (14) with respect to A H,,,, and assigning the iteration index k as in
equations (1)-(3), we obtain expression (13).

This observation deserves discussion. The EM derivation presented above for the PO model
is model specific and its feasibility depends on the success and simplicity of the inverse Laplace
transform and the integrals that are evaluated at the E-step (12). The PH mixture representation
of a semiparametric model may not exist, in which case the EM derivation ultimately fails. Nec-
essary and sufficient conditions for this representation to exist are a corollary of the Bernstein
theorem (Feller, 1971): the survival function must be a completely monotonic function of H.
A function y(H) is called completely monotonic if all its derivatives 1 exist, i=1,2,..., and
(=1 D (H) >0, H>0. In particular, the survival function (10) of the PH mixture model is
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an infinitely differentiable function of F. The alternative derivation of procedure (13) bypasses
all the above-mentioned difficulty and formally works for any model in a straightforward and
simple fashion. This raises a series of questions. Does the procedure of Section 1 work for any
model? What is its relationship to the EM algorithm? Does it inherit the monotonicity, stability
and convergence of the EM algorithm?

A clue to generalizing the EM algorithm described above is the observation that the der-
ivation of the E-step (12) does not require knowledge of the distribution of U. Indeed, de-
note by v(x) the moment-generating function of U (other arguments are omitted), so that
v(x) = E(xV) = £{—log(x)}. Observe that the first equation in expression (12) can be written
as

E FUUc+1 N (=))
( ) o 1D

U T em (1)
where v© denotes the derivative of order ¢; v :=+, ¢=0, 1. Expression (15) represents a
variation on the topic of the derivation of moments from the transform of a distribution. The
consequence of equation (15) is a straightforward and general specification of the E-step for
any mixture model formulated in terms of the moment-generating function. In fact, it is even
more general as will be shown in what follows. To elaborate further on the issues raised above,

we need to make the few theoretical observations considered in the next section.

4. General concepts

4.1. Construction using the difference of two concave functions

For studying procedure (3), the following MM construction (Lange ef al., 2000) is useful. Let
I(x) = B(x) — A(x), where A and B are differentiable concave functions. The iterative maximi-
zation procedure,

VBx*tDy = vAx®), (16)

where VA(x) = 3A/0x is the gradient of A, represents an MM algorithm, as follows from con-
vexity arguments. The surrogate objective function for the above construction has the form

o(x|x®y = B(x®) — A(x) + VTA®)(x — xB)y. an’

4.2. EM construction

Let £ be the observed event, and U be a random variable (vector) representing missing data.
The EM algorithm is a method to maximize the log-likelihood function /(x) = log{L(x)} of
the form

L(x) = E{Lo(x|)}, (18)

where Lo(x|U) is the conditional likelihood, given missing data (the likelihood constructed to
estimate x as if U were a covariate), and x does not include parameters of the distribution of
U. To facilitate ‘distribution-free’ generalizations, we intentionally avoid explicit expressions
involving the distribution of U, and we use the conditional rather than the joint likelihood of U
and £ to represent the EM procedure. In this construction, unknown parameters entering the
distribution of U do not participate in the procedure, and the maximization is considered with
respect to parameters x only. For any function f(U), the conditional expectation of f(U), given
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observed event £ and x, is represented as

E{f(U) Lox|U)}
E{fD)|E,X} = ————"———.
VO = = Lomo
This suggests the following explicit functional notation for the conditional expectation operator
E(f9)
E(flg) = ——=, (19)
T19= Ty

for any functions f and g of U, where U is a random variable, and E(g) is the probability of the
condition. A standard Jensen inequality argument shows that, with this notation,

Q(xly) = Uy) + E {lo(x|U) — Lo(yID)ILo(yIU)}, lp = log(Lo), 20)

is a surrogate objective function for the target function /(x). The operation of finding U such
that Io(x|U) = E{ly(x|U)| Lo(y|U)} is referred to as missing data imputation. If imputation is
easy (E-step), maximization of Q with respect to x reduces to that of [y(x|U), a complete-data
problem. :

To prove that any converging sequence x’¥) — x*, designed according to equation (4), gives
us a stationary point in the limit, we follow the argument at x =y = x*

00(xly) _ EfoLo(xit)/ox} _ 1 8L(x) _ 0 @1
ax L(y) L(y) ax ’
which implies that the score equation dL(x)/dx = 0 is satisfied in the limit.

The EM algorithm proceeds by iterations E{lj(x**D|U) Lo(x®|U)} = 0, where at the kth
iteration this equation is solved for x*+1),

4.3. Quasi-EM construction

Let us revisit the EM construction under the question what properties of the E-operator did we
actually use in the derivation of Section 4.2? They are conditional expectation performed ac-
cording to expression (19), linearity and the Jensen inequality in equation (20) and interchange-
ability of E and 8/9x in equation (21). Operators satisfying these properties will be called QE.
As soon as a QE operator satisfying these requirements and such that L(x) = QE{L(x|U)} is
constructed, the likelihood function L can be maximized by an MM algorithm with the surro-
gate objective function as in equation (20) with E replaced by QE. The rationale behind this
substitution is that the evaluation of E requires that U be a random variable, and that we know
its distribution, whereas that of QE does not.

Formally, let B be some set of basis functions (including the function f(«) = 1), and S be a set
of all admissible functions stretched on B using linear combinations. In other words S consists
of functions f such that f =¥; q; f; for any sequence (finite or infinite) of functions { f;}, fi € B,
and real numbers {a;}.

Define QE as a linear functional mapping S to real numbers such that

(a) QE(1) :=1, where 1 means a function that is equivalent to 1 (normalization),
(b) forany f=%;a;f; €S, fi € B, QE(f) :=X; a; QE(f;) (linearity),
(c) for any function f(u,a) € S, and such that 3f(u,a)/da € S,

QE{fU,a)} _ 9f(U,a)
da “QE{ da }

(interchangeability),
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(d) asin expression (19), for any functions g and fg € S and such that QE(g) #0,

QE(f9)
E = 22
QE(fl9) = "G5 s (22)
(conditional QF) and
(e) given the functions g, fg and g log(f) € S,
QE{log(f)lg} < log{QE(fl9)} (23)

(Jensen inequality).

Let us consider the QE requirements more closely. We start by postulating one basis function
fo(U,a) and the value of QE on that basis function QE(fy) := ~(a), where v is some function
of a. Dependent on how many times we are allowed to differentiate under the QE symbol, the
derivatives

W, a) =89 f(U,a)/3d

must also be included in the set of admissible functions S, so that derivatives of QE(f) can be
defined. Moreover, QE on £, i=1,2,..., are automatically defined by the interchangeability
property through derivatives of y, as QE{ "} = . As we can see, QE construction is cloned
from fy and y. Mathematical expectation E{ fo(U,a)} is an integral transform of U, where a is
an argument of the transform. Dependent on the choice of the function fy, QE mimics differ-
ential properties of the corresponding transform, whereas the function + is not necessarily an
integral transform.

To study procedure (3), a QE construction based on moment-generating functions is useful.
This construction is cloned from the basis function fo(U,a)=a", 0<a<1,U>0. For a
mathematical expectation, E(fp) = is the moment-generating function of U. If we want to
be able to differentiate twice under the QE symbol, we need two more basis functions Ua? and
U2%aY, so that

QE(4dY) = av'(a),
QEW?2dY) = av/(a) + a*v"(a),

QE(@@Y) = y(a),
} (24)

by the interchangeability property with two derivatives of v allowed. We now derive the Jensen
inequality for this construction. First, noting equation (15), introduce the conditional QE

,Y(c+1)(x)

O(xlc) = QEWU|UxY) = ¢ + x—
7 (x)

(25)
where we used expressions (22) and (24) to obtain the right-hand part of expression (25), c=
0, 1. The function © is a surrogate of conditional expectation of U, given observed data, and
it serves as an imputation operator in the QEM construction. Next, let B; be a family of
functions By = {U*aV,0<a < 1,U > 0}. Then by using the fact that, for f = f(U,a) =aY and
9=9(U,b)=UbY,

1
= [QE{log(£)la} ~ 1og{QE(/I)}] = - {O(bIe) ~ (@b},

the following can be proved.
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Theorem 1 (Jensen inequality for QE). Let ©(x|c) as defined by expression (25) be a non-
decreasing function of x, ¢=0,1. Then inequality (23) holds true for any fe By and
geByUB.

It is interesting that mathematical expectation satisfies the assumption of non-decreasing ©,
which we call the convexity assumption for reasons that will become clear later as we discuss an
application of the above theory to semiparametric likelihood.

Theorem 2 (convexity for mathematical expectation). Let -y be a function defined by using the
mathematical expectation operator E as y(x) := E(xY), where U is a non-negative random
variable. Then ©(x|c) as defined in expression (25) is non-decreasing in x for any ¢ = 0, 1.

Proof. The Cauchy-Schwartz inequality with functions £(U, x) = U+</2xY/2 and {(U,x) =
U</2xV/2 can be used to show that ©'(x|c) > 0.

5. Non-linear transformation models

5.1. Definition
To study procedure (1)-(3) in more detail using the developments of Section 4, we need to
specify a certain structure of the likelihood function to be optimized. To do this, let us confine
ourselves to a large, yet specific, class of semiparametric survival models. Consider a parametric
regression model with support on [0, 1]. Let v(x|3,2),x € [0, 1], be a parametrically specified
distribution function in x, conditional on covariates z. We require that -y be twice differentiable
with respect to x and regression coefficients 3.

We can now define a semiparametrically specified survival function G (¢|3, ), given covariates,
as

G(B,2) = v{F1\B,z}, (26)

where the base-line survival function F is specified nonparametrically. The class of models
(26) will be called NTMs, to give it a name. Functions like v will be called NTM-generating
functions. An NTM is obtained by plugging a nonparametrically specified survival function F
into a parametric distribution function « with the support compatible with the range of F.
One important subclass of NTMs is the family of PH mixture models (10), for which v is a
moment-generating function of U,

v(x8,7) = E(xVPD|z).

To represent a semiparametric model in the NTM form, we need to express its survival func-

‘tion G as a function «y of a base-line survival function F (this representation is not unique and

is not always possible). For example, from equation (9) we obtain the PO model in the form
G(t]) = 6()/[6(-) — log{ F()}], which gives
6()

6(-) —log(x)’
The class of NTMs includes the class of linear transformation models (Cheng et al., 1995,
1997). 1t is easy to show that a linear transformation mode! can be represented as v(x|3,z) =
pllog{6(B,2)} + g(x)], where p is a parametrically specified tail function, g is an inverse tail
function and 6 is a predictor (it is convenient to specify g as the inverse of p; then § = 1
corresponds to the base-line y(x|-) = x).

yxl) = @7
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5.2. Algorithm

In the survival analysis formulation, under non-informative right censoring, the contribution
of observations sampled from an NTM (26) to the likelihood are log(—dG) and log(G), for a
failure and censored observation respectively. We have

—dG(118,2) = ¥ {F(1)|B,2} F() dH(),

where ¥/ (x|-) = dy(x|-)/dx, differentials are taken with respect to ¢ under a continuous model
and we recall that F = exp(—H). We may now rewrite the likelihood (8) for an NTM as

n n
I=5 Dilog(AH)+ Y. Y log{d(FilB,zj,cij)}, (28)
i=1 i=1 jeC;UD;
where
I(x| -, ¢) = x O xl),

and A H; is substituted for d H(¢;). It is easy to check that a negative derivative of log{J(F;|-,¢)}
with respect to AH,, is represented by ©(F;| - ,¢), if m < i, and is equal to 0 otherwise, where
the function © is defined by expression (25). Therefore, the construction (1)—(3) of Section 1
leads us to the iteration scheme

AHE =D, [ 5 O(FP1B,2j,01). 29)
ijeRIN

This procedure is a generalization of procedure (13) to the NTM family. For the PO model,
substituting equation (27) into expression (25), we obtain
_ c+1

6()) —log(x)’
Itis clear that, with © given by equation (30), the general procedure (29) turns into the procedure
(13) derived for the PO model in Section 3.

(x| -,0) 30

5.3. Quasi-expectation form of a non-linear transformation model

We now make use of the QE theory of Section 4.3 to provide a link between NTMs and the QE
operator. Equations (24) summarizing second-order differential properties of the QE operator
will be the main instrument of this section.

First, let us synchronize the development of Section 4.3 and the definition of NTM (26) in
Section 5.1 by assuming that the function - that is used in both sections is the same function.
In fact, we already used this synchronization when we noticed in the previous section that © in
equation (29) and in expression (25) is the same function. Now, from the first line of expression
(24), with F(¢) instead of a, we obtain the QE form of the NT model

G(118,2) = QE4, {F1)"}, (31

where the subscript 3,z to the QE operator indicates that QE is defined by using the function
~v(x|8,z). Equation (31) is a postulate in the definition of the QE operator, and its link to the
NTMs is established as we assume that QE is defined by using an NTM-generating function .

Now, consider the likelihood function ! (28). Given an observation (t,z,¢),c = 0, 1, its con-
tribution v{ F(#)|8,, c} to the likelihood L = exp(l) can be written as

v(F|-,c) =9(F|-,0)AHS = AH°FS yO(F| - ,¢) = QE(AHUFY),
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where the last equation follows from the first two lines of expression (24) and linearity of QE.
As a result, the likelihood of an NTM mimics that of a mixture model

L = [IQE(AHCU°FY).

Consider the hazard function A(¢|z), corresponding to the survival function G(tiz). Differ-
entiating the survival function (26), and using expression (24), we have

1 aG@) _ Y{FOI}F®, = QE{UF®"}
Gl o Y{FOI} QE{F()U}

where h is the hazard function corresponding to F. Applying the definition of conditional QE
(22) to this expression, and using expression (25), we obtain

Mt|z) = QE{UIF®Y} h(t) = O(F| -,0) h().

Aty == h(?) h(®),

This is a generalization of the fact that the population hazard function at time ¢ in a heteroge-
neous population is represented as a conditional average, given survival up to time ¢.
Bringing these derivations together with expression (25), we have the following theorem.

Theorem 3 (QEM construction). Consider a survival analysis problem for an NTM gener-
ated by the function (x|, z), with fixed covariates. With the QE operator as defined in
Section 4.3, and using the same NTM-generating function v in its definition, the following
representations are valid: survival function,

G(t18,2) = QE4,{F1)'};
hazard function,
Mtlz) = QE{UIF()Y} h(t) = O(F| - ,0) h(1),

where ) and & are hazards functions corresponding to G and F respectively; likelihood func-
tion,

l=i( > log[QE,,,,,.,.{(UAH,-W,-”}]);

i=1 \ jeCUD;
imputation operator,
U = QE(|U°FY) = ©(F| -, 0), c=0,1,

where U denotes U, imputed by using the conditional QE operator.

6. Summary and justification of the procedure

Let us now go back to the EM algorithm of Section 3 and see how the results obtained since
then allow us to streamline and justify our algorithm construction, using the PO model as an
example. In summary, we now have the following procedure.

(a) Obtain the NTM-generating function, representing the model survival function as a func-
tion of F. For the PO model (9) G(¢[-) =0(-)[6(-) — log{F(t)}]*1 , we have equation (27),

v(xl) = 6(){6() — log(x)} "
(b) Obtain the imputation operator (25)
0| = ¢+ x 7D (x|) ¥l )7
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For the PO model, this results in equation (30),
O(x1) = (c + D{C) —log)}~".

Check that ©(x]-) is a non-decreasing function of x (see the justification below).
(c) Obtain the profile likelihood by iterations (29),

-1

. k

AH,f,Hl) = Dm{ Z e(Fi( )lﬂ,zija Cij)} .
ij€Rm

(d) Maximize the profile likelihood with respect to 3 as in Section 2.

For the PH mixture model, QE is equivalent to E (compare equations (31) and (10)), which
makes © the conditional expectation of U, given observed data (compare expressions (25) and
(15)). In this case, the above procedure is an EM algorithm.

Justification of this procedure works through the proof of monotonicity (i.e. the likelihood is
improved at each step) under the following assumption.

6.1. Convexity assumption
Consider an NTM with the NTM-generating function -y. Assume that

©(x|B,z,c) is a non-decreasing function of x, for any 8, z, c. (32)
We have two ways to show monotonicity.

(a) Observe that, under assumption (32), the likelihood (28), as a function of the vector
AH, represents a difference between two concave functions X; D; log(AH;) and
—3%;;log{¥(F;|)}. This follows from the fact that © is the negative derivative of log(:f)
with respect to H. Therefore, monotonicity follows from the results of Section 4.1.

(b) Observe that the likelihood is represented as a QE L = IIQE(AH U°FY) (Section 5.3),
and that under assumption (32) the QE operator satisfies the Jensen inequality (Section
4.3). Therefore, the EM proof of monotonicity works.

Convergence of the algorithm under monotonicity follows from the results of Lange et al.
(2000) and Wu (1983) under fairly general conditions.

7. Real data example

As an example we use data from the National Cancer Institute’s ‘Surveillance epidemiology
and end results’ programme. Using the publicly available database for the programme, 11621
cases of primary prostate cancer diagnosed in the state of Utah between 1988 and 1999 were
identified. The following selection criteria were applied to a total of 19819 Utah cases registered
in the database: valid positive survival time, valid stage of the disease and age 18 years or more.
Prostate cancer specific survival was analysed by the stage of the disease (localized or regional
versus distant). For the definition of stages as well as for other details of the data we refer the
reader to the documentation for the programme at http://seer.cancer.gov/.

The PH and the PO models with z representing two groups corresponding to the localized or
regional stage (10765 cases) and distant stage (856 cases) respectively were fitted by using the
profile MM algorithm. The log-odds-ratio was estimated as 3 = —3.251 with 95% asymptotic
confidence interval (—3.416, —3.086). A likelihood ratio test showed that the difference between
groups is highly significant (p < 0.0001). Observed (Kaplan—Meier) and expected model-based
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Fig.1. Observed ( ) versus expected (
fitted to the prostate cancer data

) plots corresponding to (a) the PH and (b) the PO model

estimates of the survival functions by group are shown in Fig. 1. The PO model showed a
superior fit to the data.
On the basis of the PO model, four different approaches to model fitting are compared.

(a) MM or QEM:the method is described in Section 6. Maximization of the profile likelihood
is performed by the Powell method (Press et al., 1994).

(b) EM: the EM method is similar to the EM algorithm as used to fit frailty models with
predictor (8, z). Using the QEM formulation, the procedure is as follows.

(i) With thecurrentiteration 8% and F® compute V,.(;” =6"1(8Y,z;) @(Fi(k)]ﬂ(k), zij)
for each subject i j.

(ii) Maximize the partial likelihood for a PH model with (imputed) predictor ;' (3, z;)
with respect to 8. Set 8%+ at the solution.

(ili) Update the function F by using the Nelson—Aalen estimator for the PH model fitted
at the previous step. Denote the solution by F&+D,

(iv) Set k = k + 1. Continue iterations until convergence.

(c) Parametric: in the parametric method, the function F is specified as a Weibull survival
function. The parametric regression model is fitted by using the Powell method applied
to all model parameters.

(d) Full model ( Powell): apply the Powell method to maximize the log-likelihood of the full
semiparametric model with respect to the joint vector of regression coefficients 3 and the
base-line hazard AH.

Computation of 8, © or -y is counted as one operation. For a given tolerance ¢, the stopping
rule is defined as {**D — /® < ¢ If the method required solving a nested numerical problem
(MM or EM), the tolerance for the nested problem is specified as £/100.

First, we evaluate the precision by operations characteristics of the above numerical meth-
ods. The precision is measured by /* — [®), where the exact solution /* was approximated by
the solution obtained for & = 10720, Shown in Fig. 2 are the precision by operations curves for
the four methods, obtained by varying e. It is clear from Fig. 2 that the profile MM algorithm
outperforms the other approaches in the number of operations that are required to reach a
given precision. The profile MM method is closely followed by the frailty EM algorithm. Fit-
ting the full semiparametric model by the Powell method shows the worst performance. The
advantage of the EM-like approaches compared with methods that invoke the function F intoa
conventional maximization is explained by the utilization of a closed form solution for F in the
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Fig. 2. Precision of likelihood maximization by the number of operations (precision is measured as the dif-
ference between the limiting value of the likelihood as operations tend to co and the maximal likelihood value
achieved under a stopping rule; curves closer to the y-axis correspond to more efficient numerical methods):
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Fig. 3. Numerical efficiency by sample size for (a) the full mode! (------- , polynomial fit) and (b) the EM
(O) and MM (0) methods (------- , linear fits): , humber of operations needed to achieve a fixed pre-

cision by sample size (each point corresponds to a sample generated from a parametric PO model with a
Weibull base-line survival function with parameters specified by using the model fit to data described in
Section 7)

form of the Nelson—Aalen—Breslow estimator. For the same reason, the MM and the EM proce-
dures show a linear trend with increasing dimension, given fixed precision as shown in Fig. 3. To
obtain Fig. 3, samples of size 100~1000 were generated from the parametric (Weibull) PO model
fitted to the same data. The MM, EM and full mode! (Powell) procedures were applied to each
such sample. The tolerance & = 10~3 was used for the MM algorithm. The tolerance for the
other two methods was tuned to give a likelihood that was as close as possible yet smaller than
the likelihood achieved by the MM method (to keep the comparison conservative). The profile
MM algorithm shows the most favourable behaviour with increasing dimension, followed by the
EM procedure. It comes as no surprise that the full model (Powell) method shows the greatest
complexity.
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8. Conclusion

We presented an application of the general MM principle to a class of semiparametric models.
Three methods of specifying the surrogate objective function were demonstrated. In particular,
we clarified the connection between the likelihood-based MM principle and the imputation-
based self-consistency principle that is used in EM algorithms for semiparametric models. To
study this connection, we built an EM-like world behind the MM algorithm by using the QEM
construction. The approaches were illustrated by using continuous NTMs in a survival analysis
context. This is just one example of how these constructions can be used. Discrete survival
models, cure models, multivariate semiparametric models, models with time-dependent covari-
ates and many other statistical models can be treated by application of the principles presented
in this paper. Construction of surrogate objective functions is not straightforward. Having an
option to work a particular problem from both ends (likelihood or convexity versus imputation
or self-consistency) may increase the chance of finding efficient and general procedures that are
applicable to large classes of models.
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Estimating Cure Rates From Survival Data:
An Alternative to Two-Component Mixture Models

A. D. TsoDIKov, J. G. IBRAHIM, and A. Y. YAKOVLEV

This article considers the utility of the bounded cumulative hazard model in cure rate estimation, which is an appealing alternative to the
widely used two-component mixture model. This approach has the following distinct advantages: (1) It allows for a natural way to extend
the proportional hazards regression model, leading to a wide class of extended hazard regression models. (2) In some settings the model
can be interpreted in terms of biologically meaningful parameters. (3) The model structure is particularly suitable for semiparametric and
Bayesian methods of statistical inference. Notwithstanding the fact that the model has been around for less than a decade, a large body
of theoretical results and applications has been reported to date. This review article is intended to give a big picture of these modeling
techniques and associated statistical problems. These issues are discussed in the context of survival data in cancer.

KEY WORDS: Bayesian methods; Biologically based models; Bounded cumulative hazard; Cure models; Hazard regression; Semipara-

metric inference; Survival data.

1. INTRODUCTION

In many clinical and epidemiological settings, investigators
observe cause-specific survival curves that tend to level off
at a value strictly greater than 0 as time increases. A promi-
nent example of this pattern is shown in Figure 1(a). A well-
pronounced plateau in this display of the Kaplan-Meier curve
may be thought of as an indication of the presence of a pro-
portion of patients for whom the disease under study will never
recur. Alternatively, one can consider such patients to be cured.
Clearly, estimating the proportion of cured patients may have
important medical implications. In addition, clinical covariates
may exert dissimilar effects on the probability of cure and the
timing of tumor relapse or other events of interest. This is ap-
parent from Figure 1(b), where two survival curves for patients
with localized breast cancer stratified by age are presented.
These plots suggest that the two categories of patients are likely
to have a similar probability of cure, whereas a short-term effect
of age at diagnosis on cancer-specific survival is highly plausi-
ble. It is also clear that the commonly used proportional hazards
model fails to fit the data shown in Figure 1(b). In Section 3.3
we present a detailed example involving prostate cancer sur-
vival that has major biomedical implications. Such an advance
would have not been possible to make without invoking the
concept of cure. The preceding examples suggest at least two
advantages that survival models have for allowing for the pres-
ence of cured individuals: (1) They enrich our ability to inter-
pret survival analysis in terms of characteristics that have a clear
biomedical meaning; (2) they lead to more general regression
models, thereby extending our ability to describe actual data.
The latter contention holds whether the probability of cure is
significantly separated from 0 (see Sec. 3).
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To develop relevant methods of statistical data analysis, one
has to provide a rigorous definition of cure rate. In this arti-
cle, we will proceed from the most widely accepted concept of
biological cure. The probability of (biological) cure, variously
referred to as the cure rate or the surviving fraction, is defined
as an asymptotic value of the survival function E(t) as ¢t tends
to 00. Let X be the survival time with cumulative distribution
function (c.d.f.) G(t) = 1 — G(¢). Under a continuous model
the existence of a nonzero surviving fraction, p, is determined
by the behavior of the hazard function, A(f), by virtue of the
equality

p= lim 6(t)=exp{—fook(u)du]. 1.1)
- 00 0

Whenever p > 0 the underlying survival time distribution is
said to be improper. Clearly, A(«) — 0 as 4 — oo if p > 0 and
the limit of A(u) (as # — 00) exists. Formulated in terms of the
marginal failure time distribution, this definition does not imply
that the overall survival time may be infinite, because the time
to death from other causes (censoring time) is finite with prob-
ability 1. Therefore, the distribution of the observed lifetime in
the presence of competing risks is always proper, and there is
no defiance of common sense.

Boag (1949) and later Berkson and Gage (1952) proposed a
two-component (binary) mixture model for the analysis of sur-
vival data when a proportion of patients are cured. Since then,
the binary mixture-based approach has become the dominant
one in the literature on cure models (Miller 1981; Farewell
1982; Goldman 1984; Greenhouse and Wolfe 1984; Gamel,
McLean, and Rosenberg 1990; Gordon 1990; Bentzen, Jo-
hansen, Overgaard, and Thames 1991; Goldman and Hillman
1992; Kuk and Chen 1992; Laska and Meisner 1992; Maller
and Zhou 1992, 1994, 1995, 1996; Sposto, Sather, and Baker
1992; Yamaguchi 1992; Gamel and Vogel 1993; Gamel, Vo-
gel, Valagussa, and Bonadonna 1994; Chappell Nondahl, and
Fowler 1995; Taylor 1995; Gamel, Meyer, Feuer, and Miller
1996; Peng and Dear 2000; Sy and Taylor 2000, 2001, to name
a few). The main idea behind this approach is that any improper
survival function can be represented as

G =E{[GotN™} =p+ (1 -p)Golr), (1.2)
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Figure 1. (a) Relapse-Free Survival for Patients With Hodgkin's Disease Treated by Radiotherapy. Data from the International Database on
Hodgkin's Disease. (b) Breast cancer specific survival in local stage by age. Data from the Surveillance Epidemiology and End Results Program.

where M is a binary random variable taking on the values of 0
and 1 with probability p and 1 — p, respectively, with

p = Pr{X = o0},

and Go(?) is defined as the survival function for the time to
failure conditional upon ultimate failure, that is,

Go(t) =Pr{X > t|X < o00}. 1.3)

When designing regression counterparts of model (1.2), it is
common practice to use the logistic regression model for in-
corporating covariates into the probability p, and proportional
hazards regression for modeling the effect of the covariates on
the conditional survival function Go.

An alternative, but equally general, representation of an im-
proper survival time distribution can be obtained by assuming
that the cumulative hazard A(t) = f(; A(t)dt has a finite posi-
tive limit, say 6, as ¢ tends to 0. In this case one can write

Cy=ef®O,  9>0, >0, 1.4)

where F(t) = A(t)/9 is the c.d.f. of some nonnegativerandom
variable such that F(0) = 0. In what follows we will call the
model given by (1.4) the bounded cumulative hazard (BCH)
model.

Within the nonparametric framework it makes no difference
whether representation (1.2) or (1.4) is used as a basis for the
estimation of p, but the situation is not the same when Golr) is
parametrically specified. Using definition (1.3), one can repre-
sent the survival function (1.4) in the form of formula (1.2), but
both p and G become functions of the common parameter 8:

e 0F(®) _ b

1—e-?
A similar confounding occurs when one represents (1.2) in the
form of (1.4). A summary of useful formulas showing the rela-
tionship between the two models was given in Chen, Ibrahim,
and Sinha (1999).

Although the models given by (1.2) and (1.4) are just two

different ways of rescaling the survival function G(1), it took
a long time to realize some virtues of the BCH model (which

p=e?, Go(t) =

will be discussed later), which is the main subject matter of the
present article. The first move in this direction was due to Hay-
bittle (1959, 1965). The author proceeded from the observation
that in some clinical data on cancer survival, an actuarial es-
timate of the hazard function tends to decrease exponentially
with time. If the same property holds for the true hazard, ex-
pression (1.4) assumes the form:

G(@t)=exp{—-0(1—e7%)}, ¢>0. (1.5)

A comprehensive treatment of this model was given by Cantor
and Shuster (1992) who used the following parameterization:

-G—(t)=eXp{§(I —e“)}. ¢#0, (1.6)

where 8 > 0, but ¢ may take either sign. If ¢ > 0 the survival
function (1.6) corresponds to the proper Gompertz distribution,
but if { < O the distribution is improper with the surviving
function equaling /%, For this reason the distribution given
by (1.6) can be called a generalized Gompertz distribution. In
more recent work Cantor (2001) used representation (1.6) to de-
termine the projected variance of estimated survival probabili-
ties in clinical trials. A generalization of the model (1.6) was
proposed by Cantor (1997) who suggested approximatinga log
hazard by a polynomial to obtain an estimate of the cure rate
based on formula (1.1).

Clearly, the Gompertz-like model given by formula (1.5) is
a special case of formula (1.4) with the function F(¢) spec-
ified by an exponential c.d.f. with parameter {. The repre-
sentation (1.4) was first introduced in an article of Yakovlev
et al. (1993) and discussed later as an alternative to the mix-
ture model by Yakovlev (1994). Interestingly enough, Yakovlev
et al. (1993) proceeded from purely biological considerations;
the idea of imposing a constraint on the behavior of the haz-
ard function was introduced later in Tsodikov, Loeffler, and
Yakovlev (1998b). In fact, the authors proposed a simple mech-
anistically motivated model of tumor recurrence yielding an
improper survival time distribution. Under this model the prob-
ability of tumor cure is defined as the probability of no clono-
genic tumor cells (clonogens) surviving by the end of treatment.
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The cell is called clonogenicif it is capable of producing a cell
clone, that is, a group of cells that have this cell as their com-
mon parent. There is biological evidence that the majority of
recurrent tumors are clonal in origin; that is, they arise from a
single progenitor cell. In cancer studies the primary endpoint is
conventionally the time to failure, referred to as survival time
or failure time, X, with the event of failure being either tu-
mor recurrence (disease-free survival) or death caused by the
cancer under study (cancer-specific survival). According to the
clonal model of posttreatment tumor development proposed by
Yakovlev et al. (1993), a recurrent tumor arises from a single
clonogenic cell. Every surviving clonogen can be characterized
by a latent time (termed the progression time) during which it
could potentially propagate into an overt tumor. Let M be the
number of clonogensremaining in a treated tumor and @ be its
probability generating function (p.g.f.). Assuming that progres-
sion times for surviving clonogens are independent and identi-
cally distributed (i.i.d.) with a common survival function F, one
can find easily that G(r) = gu (F(2)), t > 0. This formula sug-
gests that knowledge of the entire distribution of the number of
surviving clonogens is critical for developing biologically mo-
tivated survival models with cure. In particular, suppose that M
is Poisson distributed. Then the survival function G (1) is given
by the BCH model (1.4) with the parameter 6 interpreted as the
mean number of surviving clonogens.

A more general mechanistic model was considered by Hanin
(2001). Suppose a tumor initially comprising a nonrandom
number i of clonogenic cells is exposed to a fractionated radi-
ation schedule consisting of n instantaneously delivered equal
doses D separated by equal time intervals . It is assumed that
every cell survives each exposure to the dose D with the same
probability s = s(D), given that it survived the previous expo-
sures, and independently of other cells. It is also assumed that
the death of irradiated tumor cells is effectively instantaneous.
Assuming, in addition, that tumor growth kinetics between ra-
diation exposures can be modeled as a homogeneousbirth-and-
death Markov process with birth rate A > 0 and spontaneous
death rate v > 0, Hanin (2001) derived an explicit formula for
the distribution of the random variable (r.v.) M; the latter turned
out to be a generalized negative binomial distribution. The cor-
responding p.g.f. is of the form (Hanin 2001):

w(u)=(“"b“), lul <1, (1.7)
c—du

suggesting the following survival function for the time to tumor

recurrence
— a—-bF@®)\
G == N .
® (c—dF(t)) (1.8)

wherea =1—w—s + sou™ !, b=swu"'-1), c=1-
w—s+sp" ! d=s@u" ' = 1), a=e N p=s/a, 0=
A —va —s(h = w)]/[AQ — )], F(t) =1— F(r), satisfying
the conditions: 1 # 1 and A # v. The preceding formula may
be taken as the starting point for the developmentof a new class
of regression survival models; with this aim in mind, it makes
sense to reduce the number of baseline parameters by enforcing
the conditions: F(0) =0 and G(0) = 1.
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Clinically detectable primary tumors are estimated to contain
at least i = 10° clonogenic tumor cells ranging up to probably
10° cells or even more (Tucker 1999). On the other hand, the
probability, s”, for a cell to survive n fractions is expected to
be very low, especially in the total dose range where cures oc-
cur frequently. This provides the rationale for exploring limit-
ing distributions associated with model (1.8). As was shown by
Hanin (2001), if n is fixed, i & 0o and s — 0 in such a way
that there exists a limit A = lim;j 5 00 is", 0 < A < 00, then the
distribution of the number of clonogens converges to a Poisson
distribution with parameter 6 = A/a"~!, This result disproves
the conjecture (Tucker, Thames, and Taylor 1990; Tucker and
Taylor 1996; Tucker 1999) that, due to cell proliferation oc-
curring between fractions of radiation, the limiting distribution
of the number of surviving clonogenic cells may not be Pois-
son. However, the convergence to the limiting distribution is
quite slow, indicating a strong point in the line of reasoning
presented by these authors. The rate of convergence was eval-
uated numerically by Hanin, Zaider, and Yakovlev (2001) in
terms of the total variation distance between the exact distribu-
tion of the number of clonogens and its Poisson limit. Another
useful limiting distribution arises in the subcritical case where
@ =s/a < 1. This condition means that the total cell loss due
to both causes of cell death (radiation induced and spontaneous)
prevails on average over the cell gain owing to the proliferation
of tumor cells between fractions of radiation dose. An explicit
expression of this distribution was derived by letting i — oo
and n — oo so thatiu” — y, 0 < y < oo (Hanin et al. 2001).

The book by Yakovlev and Tsodikov (1996) presents sev-
eral applicationsof (1.4) with a two- or three-parameter gamma
distribution for the function F. The authors use the Hjort test
(Hjort 1990) for goodness-of-fit testing, which is a natural
choice in the parametric analysis of censored data without co-
variates. In a recent article, Gregori, Hanin, Luebeck, Mool-
gavkar, and Yakovlev (2002) adopted the Hjort goodness-of-fit
test for testing several models of carcinogenesis. Methods of
model diagnostics specially designed for different versions of
this model have yet to be explored.

In this article, the current state of the art in methodology of
statistical inference based on the BCH model is reviewed. The
approach under review has emerged from cancer studies, and
this fact necessarily reflects on the focus of our discussion. The
history of the BCH model is relatively short, and the model has
not yet enjoyed applications to other human diseases, to say
nothing of nonmedical applications, such as estimation of re-
cidivism rates. However, it should be kept in mind that other
possible applications of the BCH model, including those men-
tioned previously,are every bit as well justified as for the binary
mixture model; there is no reason for practitioners to refrain
from using the BCH model just because it was originally de-
rived in the context of cancer development.

The BCH model has the following distinct advantages:

1. It allows construction of a rich class of nonlinear transfor-
mation regression models to describe complex covariateeffects.
The class includes the traditional proportional hazards model
as a special case; this structure is lacking in the binary mixture
model. This makes the BCH model a natural tool for studying
and testing departures from the proportionality of risks.
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2. In some settings the BCH model provides a biologically
meaningful interpretation of the results of the data analysis.
This feature is especially important for combining statistical
inference with other mathematical approaches to biomedical
problems, for example, optimization of cancer therapy.

3. The BCH model offers certain technical advantages when
developing maximum likelihood or Bayesian estimation proce-
dures.

Before turning to the discussion of specific methods and re-
sults, one important remark is in order here. As is evident from
definition (1.1), the probability of cure is essentially an asymp-
totic notion. However, the period of observation in actual truth
is always finite, which is to say that one deals here with a prob-
lem of prediction rather than with the usual type of statistical
inference. In other words, additional assumptions as to the be-
havior of G(t) or A(t) beyond the period of observation are
needed. At the same time a sample of i.i.d. right-censored ob-
servations is available, and it is natural that one tries to reduce
the problem of prediction to that of estimation.

2. NONPARAMETRIC METHODS FOR
A HOMOGENEOUS SAMPLE

As was mentionedin Section 1, formula (1.2) is a general ex-
pression for any improper survival time distribution. Proceed-
ing from this representation, Maller and Zhou (1996) developed
a theory of nonparametric estimation of the probability p. Sup-
pose that the survival time distribution G (¢) is absolutely con-
tinuous and let £ < #; < - - - <, be a sample (subject to right
censoring) of the ordered observed failure times. Maller and
Zhou (1996) suggested estimating p by

ﬁn = 5n (),

where G, (?) is the Kaplan-Meier estimator of the underlying
survival function. Then a natural estimator for the conditional
survival function Go(¢) is given by

Con®) = (Gu®) = Bn) /(1 — pu),

For any c.d.f. K () define its right extreme ¢ as tx = inf{t >
0: K () = 1}. The consistency question for the estimator p, is
settled in the following result by Maller and Zhou (1992):

2.1

t>0, pp<1. (2:2)

Assume that censoring is independentand 0 < p < 1. Let
C(t) be the censoring time survival function. Let Ty be the
right extreme of H(t) =1 — G()C(t) and suppose that the
cdf Gt)=1-— _G—(t) is continuous at Ty in case Ty < 00.
Let Go(t) =1 — Go(t) and C(t) = 1 — C(t). Then the estima-
tor py is consistent if and only if

TG, < TC. (2.3)

Under the same conditions the authors showed that the con-
dition tg, < tc is necessary and sufficient for the conver-

gence in probability of sup;>g IEO,, (1) — Eg(t)l to 0 as n tends
to 0o. Assuming the inequality (2.3) and some additional mild
conditions, Maller and Zhou also proved that, when p < 1,
/n(pn — p) is asymptotically (as n — 00) normally distrib-
uted with mean 0. Laska and Meisner (1992) showed that the
estimator G (t,) is, in fact, the generalized nonparametric max-
imum likelihood estimator of the proportion p in the mixture
model (1.2).
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As discussed previously, the inequality 7, < tc is both nec-
essary and sufficient for consistency of the Kaplan-Meier esti-
mator of the cure probability p. This inequality may be thought
of as a quantification of “sufficient follow-up” (Maller and
Zhou 1992). If the conditionis not true, then failures may occur
after the maximum follow-up period and it is not possible to de-
termine which proportion of the late censored data has actually
been cured. Maller and Zhou (1994) suggested a statistical test
based on the length #, — ¢ of the interval between the largest
uncensored failure time ¢, and the largest overall failure time #,,.
Intuitively, if this interval is large, then the last failure has oc-
curred well before the last censoring event so there has been
sufficient follow-up. Maller and Zhou showed that, under ap-
propriate regularity conditions, the estimator ;, = (1 — N /n)"
is an approximate p value for a test of ¢, < tc, and a, con-
verges to 0 in probability if and only if 7, < 7c. Here N, is the
number of uncensored failure times in the interval 2¢; — t, £7].
This test estimates a significance level rather than controls for it,
so that the original version of the test by Maller and Zhou sug-
gests the hypothesisof sufficient follow-up to be rejected when-
ever the estimated p value exceeds a prespecified critical value,
say .05. Later, after conducting computer simulations, Maller
and Zhou (1996) came to the conclusion that this test was far
too conservative. It is clear that a pertinent test should be based
on percentiles of the sample distribution of ¢, (or the closely re-
lated statistic g, = N, /n) rather than on a fixed p value. Unfor-
tunately, the relevant sample distributions are not known even
in large samples. The idea of sufficient follow-up is intuitively
compelling and a search for a more general formal definition of
this notion (which is not necessarily related to consistency of
the corresponding nonparametric estimator) should be contin-
ued.

When proceeding from the BCH model, formula (1.1) sug-
gests the following nonparametric estimator of the cure proba-
bility: p, = cxp[—[\,,(t,,)), where An(tn) is the Nelson—Aalen
estimator of the cumulative hazard at the point of last observa-
tion. A pertinent nonparametric estimator for F(t) can be pro-
posed in the form:

Fot) = 1og G (1) 10g G (), 2.9)

where G, (2) is the Kaplan-Meier estimator for the survival
function 6(1).

It is important to note that the preceding nonparametric es-
timators yield an estimate of survival probability at the right
end T of the observation period. This estimate is all we have to
predict the behavior of the survival function beyond the period
of observation, and all such predictions are final. If we strictly
follow the formal definition of cure rate, we have to recognize
that the nonparametric approach implies a straight-line extrap-
olation of the estimated survival function beyond the period of
observation T G () is set to be equal to a constant value of
Gn(ty) for all z > T. The same holds true for the semiparamet-
ric regression models discussed in Section 3. It should also be
noted that the length T of the period of observation is implic-
itly involved in (2.3). Let us decompose the censoring time sur-
vival function as follows: C(t) = C (¢)[1 — I(t — T)], where
I(x) =0 for x <0 and I(x) = 1 for x > 0. Then inequal-
ity (2.3) is replaced by tG, < min{trcs, T}. The finiteness of
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the follow-up period is relevant to large-sample studies, where
the value of T should be kept fixed when increasing the sample
size; otherwise, ensuring asymptotic properties would imply in-
finite observation time.

Another feature inherent in the nonparametric approach has
to do with the instability (high variance) of the nonparametric
estimators. It is a well-known fact that the Kaplan-Meier es-
timator becomes highly unstable for ¢ close to the end of an
observation period in the presence of heavy censoring (Pepe
and Fleming 1989; Cantor and Shuster 1992; Tsodikov 2001),
which may have a very significant effect on the accuracy of cure
rate estimation. The method for testing for sufficient follow-up,
proposed by Maller and Zhou (1994, 1996), suffers from the
same kind of instability as well. The nonparametric estimator
f‘,,(t) = ngﬁ,,(t)/ logﬁ,, (t,) is particularly sensitive to varia-
tions of G, (t,) in the denominator. Therefore, it is not recom-
mended to use it in its original form. An improved estimator
was proposed in Tsodikov (2001). This is a two-stage estima-
tor. First, Gy, (t,) is estimated parametrically. Then G(@) is es-
timated nonparametrically with G, (1,)) constrained to be equal
to the corresponding value of the parametric estimate.

3. SEMIPARAMETRIC REGRESSION SURVIVAL
MODELS WITH CURE

3.1 Mixture Models and Generalizations

So far we have followed two distinct lines of reasoning in the
discussion of cure models: statistical and mechanistic. We now
consider more formal relationships between the two aspects of
the problem.

A cure model can be formulated by making assumptions
about either the hazard or the survival function. For example,
making the assumption on the bounded cumulative hazard in a
proportional hazards (PH) model, we obtain the so-called im-
proper PH model

G(t|B,2) = exp{—0(B,z)F (1)}, (3.1)

where B is a vector of regression coefficients, z is a vector of
covariates, and 6(8, z) is a known function relating 8 to z. In
what follows we allow for more than one predictor, and for an
arbitrary parameterization of regression predictors. However, in
the examples the most common exponential parameterizationis
used, in which 6(8,z) = exp(B'z}, where B is the transposed
B vector. The component By of the vector B = (Bo, B1,...) is
the intercept term; therefore, zop = 1 in the vector of covariates
z=1(20,21,...).

A general class of semiparametric regression models, nonlin-
ear transformation models (NTM), was proposed in Tsodikov
(2002, 2003):

Gl =y(F®)IB,z), (3.2)

where y (x]8,z) is some parametrically specified cumulative
distribution function in x with support on [0, 1]. Although our
discussion allows for any parameterization of y in terms of B8
and z, in the examples we assume that y is parameterized
through a set of parameters/predictors 8, 0, ..., where each
predictor is further parameterized using generally different sets
of regression coefficients B, 85, ..., so that 6 = exp{B]z},
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n = expf{ ﬂ'zz}. The linear transformation models considered by
Cheng, Wei and Ying (1995) represent a subclass of NTM with

y(x|B,2) = pllogf(B,z) +q(x)], (3.3)

where p is a tail function (=1— c.d.f.) and g is an inverse of
a tail function (not necessarily that of p). Cure models repre-
sented by the NTM class were introduced in Tsodikov (2002).
To make (3.2) a cure model, the following assumptions are
made to enforce the limit 5(t|ﬁ, z)—>p>0:

y(OlB.2)=h(B.2)>0,  lim F()=0. (3.4)

The restriction lim;— o0 F(¢) = 0 proposed by Taylor (1995)
in the context of the two-component mixture model removes
the overparameterization of the description of the baseline cure
rate through F and / and the associated estimation and conver-
gence problems for the fitting algorithms. Following the restric-

tion, the estimate F is assumed to satisfy Fi (last failure) =
This restriction is also necessary for separation of the long- and
short-term covariate effects on survival. The preceding restric-
tion should be observed when parameterizing the model, as dis-
cussed in the following examples.

Alternatively, a cure model can be formulated as a two-stage
model. First, an unobservablerandom variable M is postulated
with distribution p (m| 8, z) that depends on covariates. Second,
the observed survival function is formed as

G (B, 2) =E[F(OM|], (3.5)

where the expectation is taken with respect to M, given z, and
the distributionof M dependson § and z. The mode! (3.5) rep-
resents a generalized PH frailty model, which we simply call
the PH mixture model, introduced in Tsodikov (2002, 2003),
where M is assumed to be an arbitrary nonnegative random
variable. In this context M can be interpreted as a missing co-
variate in a PH model. Obviously, the usual PH frailty model

G118, =E[F()VBD|q], (3.6)

where the distribution of U is independent of covariates, is
a particular case of (3.5) with M = U#(8, z). Missing vari-
ables U dependent on covariates have been considered by sev-
eral authors (e.g., Wassel and Moeschberger 1993) within the
shared PH frailty framework. It should be noted that the PH
mixture model (3.5), although at least as general as (3.6) with
U = U(B, z), leads to a computationally efficient estimation
procedure that we consider in the next section. Because all
models considered previously in this article are particular cases
of (3.5), an estimation procedure designed for the PH mixture
model, or for the NTM subclass (3.2) restricted to (3.4), repre-
sents a universal tool for statistical inference with such models.

The discrete mixture model [i.e., (3.5) with a discrete random
variable M1, which was used in particular forms as a mechanis-
tic model in Section 1, can be linked to the NTM class. Observe
that the p.g.f. of a discrete random variable M

om@) =Y pmx"

m=0

is a distribution functionin x with the support [0, 1]. Indeed, be-
cause the p,, are nonnegative, gp (x) is increasing in x. Also,




1068

em(1) = 25 o pm = 1. If M is discrete and depends on co-
variates, (3.5) can be rewritten as an NTM with

Y (x12) = om(x|2).

With the discrete mixture model, the probability of cure is given
by ¥(0iz) = ¢m (0|8, 2) = po(B, 2).

Alternatively, we may want to write an NTM model as a dis-
crete mixture model. It should be noted that NTM is a wider
class than that of mixture models. For an NTM to be a discrete
mixture, we may require that y (x| 8, z) be an analytic function
of x on [0, 1]. As such, it can be expanded in a power series
about x = 0. Additionally, the coefficients of the corresponding
power series must be positive. Should this be the case, they can
be interpreted as probabilities, and y as a generating function
of some discrete random variable. If y is a mixture model (dis-
crete or continuous), then Y (1) = y(e"‘) is the Laplace trans-
form of the distribution of the mixing variable M. Generally,
a necessary and sufficient condition for ¥ (x|-) to be a mixture
model is that ¥ be a completely monotonic function as given
by the Bernstein theorem (see Feller 1971). A function ¥ () is
called completely monotonic if all of the derivatives ™ exist
and (=1)"¢® 1) >0, > 0.

We can now represent the cure models discussed earlier in
this article as members of the mixture-NTM model family. It
should be stressed that such a representation is not unique.

The improper PH model (3.1) corresponds to

v (x|B,2) = exp{—6(8,2)(1 - x)}.

This is the generating function of the Poisson distribution, and
by expanding y about x = 0, we get a power series with Pois-
son probabilities as coefficients. This gives us the mechanistic
interpretation of the improper PH model discussed in Section 1.

Consider an extension of the improper PH model allowing
for dissimilar covariate effects on long- and short-term survival.
To construct an extended hazard model (the term was intro-
duced by Etezadi-Amoli and Ciampi 1987), we employ the fact
that F is a survival function. Incorporating covariates into F,
we can add a short-term effect to the improper PH model. The
class of extended hazard models

G(118,2) =exp{—0(B1,)[1 - 7(F®IB,.2)]}, (3.8)

where ¥ isanNTM and 8 = (B, B>), B; = (Bio, Bi1,...), i =
1, 2, was introducedin Tsodikov (2002). If ¥ is a mixture model
itself, then (3.8) is also a mixture model with y = exp{—0[1 —
¥1}. The mixing variable M that generates the family (3.8) has
a well-defined structure of a compound variable

v
M= Zsk,
k=1

where v is a Poisson random variable, Z? =0, and the §; are
i.i.d. copies of a random variable § with Laplace transform
7#(e~*). The binary distribution for v gives rise to the two-
component mixture class of models

G(t18.2)=p(B1.2) + p(B1, D)7 [F)1B, 2],
p=1—p. (3.10)
Kuk and Chen (1992) proposed a regression model in the form

of (3.10) with p being a logistic regression and ¥ a propor-
tional hazards regression. This model was further studied by

3.7

(3.9
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Sy and Taylor (2000) and Peng and Dear (2000). The Poisson
distribution for v leads to the bounded hazard family of mix-
ture models. For example, let § be degenerate (nonrandom):
Pr(8 = n(B5,2)) = 1. Then M = n(B,, z)v, where v is Pois-
son with expectation 8(8, z). Then we have the PHPH model

G(t1B,z) = exp[-0(B,, 2){1 - F(r)" B0 1

The model (3.11) was proposed by Broét et al. (2001) in the
context of two sample score tests for long- and short-term co-
variate effects.

In the preceding cure models, restriction (3.4) needs to
be observed. In models (3.8) considered so far, one predic-
tor (n) was used to describe the short-term effect. To avoid
overparameterization of the model, the intercept component
of B, has to be fixed or removed, for example, by setting
B0 = 0. With this coding of the model, the intercept term
in the first predictor (8), Bio, corresponds to the baseline log
cure rate. With an exponential parameterization of the predic-
tors, the baseline survival function takes the form G (¢| Bo z)=
exp{— exp(B10)[1 — 7(F|0)]}, where 0 = (0,0,...) and By =
((B10,0,0,...),0). As in the Cox model (Cox 1972), the re-
gression coefficients g;;, i = 1,2, j=1,2,..., correspond
to the relative effects of the covariates z;; on the long- and
short-term predictor, i = 1, 2, respectively. For example, with
the PHPH model, B, i = 1,2, j=1,2,...,is the log of the
hazard ratio in the two PH models of which the PHPH model
is composed, corresponding to the long- and short-term effect,
i =1, 2, respectively.

(3.11)

3.2 Estimation Procedures

The issue of the potentially infinite dimension has been
the most critical deterrent to the use of maximum likelihood
estimation (MLE) in semiparametric regression models. Meth-
ods based on the partial likelihood are specific to the propor-
tional hazards model and do not extend to other models. The
Newton-Raphson procedure requires taking the inverse of the
information matrix, which gets computationally prohibitiveand
unstable with increasing dimension. Characterizing the future
directions in survival analysis in their editorial in Biometrics,
Fleming and Lin (2000) pointed out that “it would be highly
useful to develop efficient and reliable numerical algorithms for

the semiparametric estimation. . ..” In the following sections we
review some recent approaches to the problem.
Introduce a set of times #;, i =1, ..., n, arranged in increas-

ing order, with #,+1 = 00. Associated with each #; is a set of
individuals D; with covariates z;j, j € D;, who fail at t;, and
a similar set of individuals C; with covariates z;;, j € C;, who
are censored at #;. For any function A(?) let A; = A(#;) and
AA; =|A; — Ai—1]. The generalized log-likelihood for an NT
model (3.2) can be written as

t= Z { Z log[y (Fi-1lzij) — v (Filzij))
j€D;

i=]

+Zlogy(ﬁi|zf,~)]. (3.12)

jeG




Tsodikov, Ibrahim, and Yakovlev: Estimating Cure Rates

3.2.1 ConventionalMaximization Methods. Consider max-
imization of the log-likelihood function £(x) with respect to
the joint vector of parameters X, representing regression coef-
ficients 8 and the nonparametrically specified function F. The
vector AH represents a set of jumps AH; of the cumulative
hazard function H, which can be used to parameterize F so’
that x = (8, AH). Consider a so-called direction sets method
(Press, Flannery, Teukolsky, and Vetterling 1994) constructed
as follows:

1. Given the current iteration vector x*), find the search di-
rection s,

2. Maximize f(x® + ys®)) with respect to the scalar y.

3. Set x*+D = x®) 4 y*s®) where y* is the solution at the
previous step.

4. Setk =k +1 and continue to step 1.

The Newton-Raphson method is one example of the direc-
tion sets methods. To avoid taking the inverse of the full-model
information matrix, the search direction s can be specified ac-
cording to the Powell method, which uses multiple line max-
imizations in one dimension to construct a set of conjugate
directions (Press et al.,1994).

3.2.2 Profile Likelihood Approach. Assume that we have a
method to obtain the global maximum of £ with respect to F,
given B. We discuss two such methods in the next two sections.
We may write the profile log-likelihood as an implicit function

of B:

L (B)=£(B, F*(B)), (3.13)

where F* is the solution of the problem
14 = L, 3.14
pr(ﬂ) lr‘pea}.x, ( )

where F’ is the class of proper discrete survival functions.
A profile algorithm is a straightforward nested procedure:

e Maximize £,(8) by a conventional nonlinear program-
ming method (e.g., a direction sets method).

e For any B as demanded in the preceding maximization
procedure, solve the problem (3.14) with specified toler-
ance.

Inference based on the profile likelihood is similar to that
based on the partial likelihood for the PH model. However, the
classical theory of MLE does not apply to infinite dimensions.
Importantresults have been obtainedregarding theoretical justi-
fications for the nonparametric maximum likelihood estimation
(NPMLE) method and the profile likelihood for semiparametric
models (Murphy 2000). It was shown that profile likelihoods
with nuisance parameters estimated out behave like ordinary
likelihoods under some conditions. In particular, these results
apply to the PH model, the proportional odds (PO) model, the
PH frailty model, and presumably to many other models.

3.2.3 Restricted Nonparametric Maximum Likelihood Esti-
mation. Tsodikov (2002) developed the so-called restricted
nonparametric maximum likelihood estimation (RNPMLE)
algorithm. The RNPMLE method is based on a recurrent struc-
ture of the score equations with respect to the nonparamet-
ric part of the model (7). Earlier variations of the proce-
dure were developed for the PH model (Tsodikov 1998a) and
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for the proportional odds (PO) model (Tsodikov, Hasenclever,
and Loeffler 1998a) and were subsequently generalized for
NT cure models (Tsodikov 2002). Although quite computa-
tionally intensive, the RNPMLE method is numerically stable
and it allows us to avoid taking inverses or approximating the
information matrix of the full model.

According to the nonparametric maximum likelihood
method, the model can be fitted by maximizing the general-
ized log-likelihood (3.12) with respect to the regression pa-
rameters B and the unspecified survival function F (or the
corresponding distribution function F). In doing so, the log-
likelihood £ is maximized for a step function F with steps at
the times of failures.

As discussed earlier we impose the restriction F(¢;) = 1. To
maximize (3.12) under the restriction F(¢,) = 1, we use the
method of Lagrange multipliers and obtain the system of score
equations

(B, F) _
2D -, (3.15)
20(8, F) .
a—Fi_O, i=1,...,n, (3.16)
F,=1. (3.17)

Inference procedures for the regression coefficients 8 can
be obtained from the profile log-likelihood (3.14). The profile
log-likelihoodis obtained by solving the score equations (3.16)
and (3.17) for F simultaneously, given 8.

In the RNPMLE method the system of score equations(3.16)
is partitioned into a subsystem of the form

14
3‘1;:='/fi(ﬂ—1,Fi,1’i+1)=0 (3.18)
that can be solved recurrently for Fa, ..., Fp, given Fy =0 and

F1. Finally, the equation 90(71) =1 is solved, where ¢ is de-
fined as F, generated recurrently using the subsystem (3.18).
The RNPMLE method yields point estimates and confidence
intervals for the regression coefficients and the function F
(Tsodikov 2002).

3.2.4 EM-Based Methods. The EM algorithm used to fit
shared frailty models in survival analysis (Nielsen, Gill, Ander-
sen, and Sgrensen 1992) handles H in a numerically efficient
way. This is made possible as the M step reduces to the PH
model. Estimates are obtained iteratively by maximizing the
partial likelihood and computing the Nelson—-Aalen—-Breslow
estimator (Andersen, Borgan, Gill, and Keiding 1993) for the
cumulative hazard H. Similar algorithms have been used to fit
the two-component mixture model, given by Taylor (1995), Sy
and Taylor (2000, 2001), and Peng and Dear (2000).

Recently, Tsodikov (2003) generalized the EM algorithm for
the frailty model into a universal “distribution-free” procedure
applicable to the general PH mixture model (3.5) and NTM
class (3.2). This family of algorithms (quasi-EM, QEM) is a
subclass of the so-called MM algorithms based on surrogate
objective functions (Lange, Hunter, and Yang 2000). Broadly
defined, an MM algorithm substitutes a computationally sim-
pler surrogate objective function for the target function on each




O

y
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step of the procedure (similar to the E step of the EM). Maxi-
mizing the surrogate objective function drives the target func-
tion in the desired direction. Thus, a difficult maximization
problem is replaced by a series of simpler ones. Unfortunately,
there is no universal recipe on how to find an appropriate sur-
rogate objective function. The idea of the QEM is to obtain a
surrogate objective function by generalizing the one inherent
in the EM procedure so that it does not depend on the miss-
ing data formulation of the model. Practically, the QEM ap-
proach for semiparametric models is based on a derivation of
the “distribution-free” E step for the EM algorithm, constructed
for the PH mixture model (3.5). More formally, we consider the
QEM procedure for cure models. The following statement s the
key result underlying the QEM construction.

Proposition 3.1 (Tsodikov 2003). Let T be the observed
event time under independent censoring and let ¢ be the ob-
served censoring indicator (¢ = 1, if a failure, and ¢ = 0, other-
wise). Under the PH mixture model,

Gal) =y[Fol-]=E{[Fn]""},

and if F/(z) > 0, the conditional expectation of M, given the
observed event, is given by

E{M(Q), 1,c} =0[F ()l <],
where

AARIETD

@[xl-,c]=c+xW,

(3.19)

where y©(x]-) = 8%y (x])/3x¢, ¢ = 0,1,..., yOu|) =
y(x]).

The preceding result indicates that the E step can be con-
structed using the first two derivatives of the NTM-generating
function ¥ without any knowledge or even existence of the
mixing random variable M. Specification of an algorithm for
a particular model requires evaluation of © for the model. For
example, for the models discussed in the previous section, we
have

e Improper PH model: From (3.1) or (3.7), ®(x|-,c) =
c+06()x.

e PHPH model: From (3.11), ©(x[- ¢) = 8(:)n()x" +
en(s).

Cure models require a correction of ® at the last observa-
tion [see (3.21)]. Let ¢;; =1, j € D;, and ¢;; =0, j € C;.
Let %, k=1,..., K, be the time points in ascending order
where failures occur (D is not empty). Denote by r¢ the rank
of t in the set {t;}. The ranks ry locate the points 7x on the set
{t; : 7w =1, }. By definition, we set tx+1 =n+ 1 and 70 = 0.
Imputation of the mixing variable M using (3.19) results in
the score equations for the cumulative hazard H corresponding
to F,

Dy
YiieR, O(FiIB,z;j)’

AHp = (3.20)
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where Ry = U/_, (C; UD;} is the risk set at ¢, Dy is the num-
ber of failures at #x, and

O(Fil-ij)
=
Filij)—
Y Eibig, jeCisrk—1,
y(Filij)
"
Filii)—
1+MFI'. JE€D;, i <rg-1,
= Y'(Fil-ij)
=
Fro i
_V( ri_s1"ij) reyr J €D, i=rk,
Y(Frp_ 1ij) =y Ol-i5)
0, Jeli, iz>rg,
(321

where (-);; stands for (B, z;;). The fact that the contributions
of the observations ij to the likelihood as well as © at, or af-
ter the last failure (i > rg), are different from their counter-
parts before the last failure (i <rg — 1) is due to the restriction
F;=0, i =rk,...,n, representing the fact that F is a proper
survival function. This distinction is not made if the model is a
general NTM with an unrestricted F.

It is interesting to note that the score equationshave the form
of the Nelson—Aalen—Breslow estimator for the PH model with
the usual predictor replaced by ©. Because © depends on F,
an iteration procedure is needed to satisfy (3.20). Given B, iter-
ations with respect to F can be carried out as follows:

o Atthe kthiteration F*, compute ®® for each subject.
e Update F® by F®+D ysing the Nelson—Aalen-Breslow
estimator (3.20).

It can be shown (Tsodikov 2003) that if @ (x|-) is a nondecreas-
ing function of x, or if ¥ is a PH mixture model (a stronger
assumption), then each iteration described previously improves
the likelihood. Also, this assumption makes the preceding pro-
cedure a member of the MM family (Lange et al. 2000), and the
convergence properties of the algorithm follow from the general
MM theory.

There are many ways to build a particular model fitting al-
gorithm based on the principles described previously, and this
depends on how the maximization with respect to 8 is incor-
porated into the procedure. One way would be to use partial
likelihood and a setup similar to the EM algorithm for frailty
models (Nielsen et al. 1992). Such an EM algorithm was used
in Sy and Taylor (2000) and Peng and Dear (2000) to fit the
two-component mixture model. As simple as the setup of the
procedure with a binary distribution for M might be, its gen-
eralization for a wider family of PH mixture models or NTM’s
is problematic. The key to a straightforward setup of the pro-
cedure is not to use the EM principle on B, as it would require
working with the distribution of M.

We find the profile version of the QEM algorithm particu-
larly easy and straightforward to work with. The profile QEM
algorithm outperformed conventionalmaximization procedures
(Sec. 3.2.1) and the frailty EM algorithm based on partial likeli-
hood when used to fit a semiparametric proportional odds (PO)
model. Also, it was shown to be faster than a directions set
method used to fit a parametric PO model.
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3.3 Example: Prostate Cancer Data

The study was carried out using data on 1,100 patients
with clinically localized prostate cancer who were treated with
three-dimensional conformal radiation therapy at the Memo-
rial Sloan-Kettering Cancer Center (Zaider et al. 2001). The
patients were stratified by radiation dose (group 1, <67.5 Gy;
group 2, 67.5-72.5 Gy; group 3, 72.5-77.5 Gy; group 4, 77.5-
87.5 Gy) and prognosis category [favorable, intermediate, and
unfavorable as defined by pretreatment prostate specific antigen
(PSA) measurement and Gleason prognostic score]. A relapse
was recorded when tumor recurrence was diagnosed or when
three successive PSA elevations were observed from a post-
treatment nadir PSA level. PSA relapse-free survival was used
as the primary endpoint. There were no failures observed in pa-
tients with favorable prognosis in dose group 4. For that reason
this group of patients is not included in the data analysis.

We applied the PHPH extended hazard model (3.11) with z
specified by indicator dummy variables that code the four dose
groups and the three prognostic categories. In the unrestricted
model dose and summary prognosis may each have an effect
on long-term survival through 6(z) and on short-term survival
through 7n(z). The hypothesis of no short-term effect of prog-
nostic category (proportionalhazards with respect to prognosis)
is not rejected (p = .49) by the likelihood ratio test. This obser-
vation justifies the use of the PH model for the effect of the
prognostic category. However, the total radiation dose appears
to have a significant (p < .0001) short-term effect on survival
of patients with prostate cancer, indicating nonproportionality
of the effect of dose. Resorting to our mechanistic interpreta-
tion of (3.11), we may speculate that the progression time dis-
tribution varies with radiation dose while being essentially the
same for all prognostic categories. Semiparametric estimates of
the mean values for the distributions 1 — y(F|z) are equal to
1,279, 867, 803, and 498 days for dose groups 1, 2, 3, and 4,
respectively. Estimates of the hazard ratio for the short-term ef-
fect of each dose group,

logy (F|dose group i)

— = B(dose group i),

log y (F|dose group 4)
show a monotonically increasing (with dose) short-term risk:
.188 with confidence limits (.038, 1.538) for dose group 1,
415 (065, .765) for dose group 2, .474 (.024, 1.224) for dose
group 3, and 1.000 for dose group 4.

Semiparametric estimates of the probability of cure are given
in Table 1. For comparison, we also present parametric esti-
mates obtained with F specified by a two-parameter gamma
distribution. It is shown in Table 1 that the two estimates appear
to be quite close to each other. This analysis indicates that, in
terms of cure rate, dose escalation has a significant positive ef-
fect only in the intermediate and unfavorable groups. It is also
found that progression time is inversely proportional to dose,
which means that patients recurring in higher dose groups have
shorter recurrence times, yet these groups have better long-term
survival. One possible explanation for this seemingly illogical
observation lies in the fact that less aggressive tumors poten-
tially recurring after a long period of time are cured by higher
doses and do not contribute to the observed time pattern of tu-
mor relapse. As a result tumors in higher dose groups are less
likely to recur; however, if they do, they tend to recur earlier.
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Table 1. Estimates of the Probability of Cure
(semiparametricparametric) and 95% Semiparametric Likelihood Ratio
Confidence Intervals (in parentheses) as Estimated Using Multivariate
Semiparametric Regression Analysis Based on (3.11).

Prognostic Dose group

category 1 2 3 4

Favorable .78/.80 .79/.74 .88/.87 1.00*
(.55,.95) (.68,.92) (.80,.97) -

Intermediate .37/.25 .53/.51 .67/.58 .79/.74
(.21,.55) (.41,.64) (.58,.78) (.68,.87)

Unfavorable .02/.00 .35/.27 .46/.33 .60/.64
(.00,.11) (.25, .45) (.38,.56) (.45,.74)

*The estimate of the probability of cure is set equal to 1 because no failures are observed
in this group of patients.

4. BAYESIAN INFERENCE
4.1 Parametric Cure Rate Model

Ibrahim, Chen, and Sinha (2001a) presented a comprehen-
sive treatment of Bayesian approaches for the cure rate model
G(1) =exp(—0F (1)) @.1
We review some of their work here. We let the covariates de-
pend on 6 through the relationship 6 = exp(x’B), where x is a
px 1vectorof covariatesand 8 = (B4, ..., B,) isa px 1 vector
of regression coefficients. Proceeding from the biological inter-
pretation discussed in Section 1, we can now construct the like-
lihood function (see Chen et al. 1999; Ibrahim et al. 2001a) in
a typical setting. Suppose we have n subjects and let N; denote
the number of surviving clonogenic tumor cells for the ith sub-
ject. Further, we assume that the N;’s are i.i.d. Poisson random
variables with mean 6, i = 1,2, ..., n. We emphasize here that
the N;’s are not observed and can be viewed as latent variables
in the model formulation. Further, suppose Z;1, Z;2, ...
are the i.i.d. progression times for the N; cells for the ith
subject, which are unobserved, and all have proper cumulative
distribution function F(.), { = 1,2, ...,n. We denote the in-
dexing parameter (possibly vector valued) by ¥, and thus write
F(|¥) and F(W)=1— F(1¥).For example, if F(-|[¢) cor-
responds to a Weibull distribution, then ¥ = (a, A)’, where «
is the shape parameter and A is the scale parameter. Let y; de-
note the survival time for subject i, which may be right cen-
sored, and let v; denote the censoring indicator, which equals
1 if y; is a failure time and 0 if it is right censored. The ob-
served data are Dobs = (n,y, v), where y = (y1, ¥2,..., ¥n)’
and v = (vi,vs,...,v) . Also, let N= (N1, N2, ..., N,)'. The
complete data are givenby D = (n,y, v, N), where N is an un-
observed vector of latent variables. Throughout the remainder
of this section, we will assume a Weibull density for f(y;|¥),
so that f(y|¥) = ay®*Texp(r — y* exp(A)}. When covariates
are included we have a different cure rate parameter, 6;, for each
subject,i=1,2,...,n. Letx; = (Xil, ..., Xip) denotethe px 1
vector of covariates for the ith subject. We relate 6 to the co-
variates by 6; = 6(x;B8) = exp(x;B), so that the cure rate for
subject i is exp(—6;) = exp(—exp(x;B)), i = 1,2,...,n. This
relationship between 6; and B is equivalent to a canonical link
for 6; in the setting of Poisson regression models. With this re-

VZi N,
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lation we can write the complete data likelihoodof (8, ¥) as

LB, ¥ID) = (]’[ﬂy.-Wr)”""“f(N.-f(y,-Wr))“")

i=1

n

x exPIZ [Nix!B — log(N;!) — exp(x;ﬁ)]}, 4.2)
i=1

where D = (n,y,X,v,N), X is the n x p matrix of covari-

ates, f(yil¥) is the Weibull density given previously, and

F(yil¥) = exp(—y;’ exp(1).

Chen et al. (1999) discussed classes of noninformative priors
as well as the class of power priors for (8, ¥) and exam-
ined some of their properties. Consider the joint noninfor-
mative prior (B, ¥) « w(¥), where ¥ = (o, A) are the
Weibull parameters in f(y|¥). This noninformative prior im-
plies that B and ¥ are independent a priori and 7 (B8) 1
is a uniform improper prior. We will assume throughout this
section that m(¥) = m(a|do, 70)7r(r), where m(x|dp, 70) X
a%~Texp(—1oa) and 8y and 7o are two specified hyperpara-
meters. Although several choices can be made, we will use a
normal density for mw(A). With these specifications the poste-
rior distribution of (B8, ¥) based on the observed data Dgps =
(n,y, X, ) is given by

7 (B, ¥|Dobs) (ZL(ﬂ, mD)>n(arao, (), (4.3)
N

where the sum in (4.3) extends over all possible values of the
vector N. Chen et al. (1999) gave conditions concerning the
propriety of the posterior distribution in (4.3) using the non-
informative prior 7w (8, ¥) o« mw(¥). This enables us to carry
out Bayesian inference with improper priors for the regression
coefficients and facilitates comparisons with maximum likeli-
hood. However, under the improper priors w (8, ¥) « w (¥), the
mixture model in (1.2) always leads to an improper posterior
distribution for 8 as shown in Chen et al. (1999).

Ibrahim and Chen (2000) described a general class of infor-
mative priors called the power priors for conducting Bayesian
inference in the presence of historical data. We now examine
the power priors for (8, ¥). Let ng denote the sample size for
the historical data, let yo be an ng x 1 of right-censored fail-
ure times for the historical data with censoring indicators vg,
let No be the unobserved vector of latent counts of clonogenic
cells, and let Xo be an ng x p matrix of covariates correspond-
ing to yo. Let Do = (no, yo, Xo, vo, No) denote the complete
historical data. Further, let 7o (8, ¥) denote the initial prior dis-
tribution for (B, ¥). A beta prioris chosen for ag, leading to the
joint power prior distribution

(B, ¥, aolDo,obs)

ap
o [Z L(ﬁ.woo)] mo(B, Wy~ (1 —ag~!,  (4.4)

No

where L(B8,¥|Dp) is the complete data likelihood given
in (4.2) with D being replaced by the historical data Dy and
Dy obs = (n9, yo, Xo, o). We take a noninformative prior for
mo(B, ¥), such as mo(B, ¥) o« mo(¥), which implies mo(B)
o 1. For ¢ = (&, A)’ we take a gamma prior for & with small
shape and scale parameters and an independent normal prior
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for A with mean 0 and variance cp. Also, (yo, Ao) are speci-
fied prior parameters. The prior in (4.4) does not have a closed
form but has several attractive properties. First, we note that if
mo(B, ¥) is proper, then (4.4) is guaranteed to be proper. Fur-
ther, (4.4) can be proper even if mo(8, ¥) is improper. Chen
et al. (1999) characterized the propriety of (4.4) when 7o(8, ¥)
is improper. In addition, they showed that the power prior for 8
based on the model (1.2) will always lead to an improper prior
as well as an improper posterior distribution.

4.2 Semiparametric Cure Rate Model

In this section we consider a semiparametric version of
the parametric cure rate model discussed in the previous sec-
tion. Following Ibrahim et al. (2001a), Chen, Harrington, and
Ibrahim (2001), and Chen and Ibrahim (2001), we construct
a finite partition of the time axis, 0 < 51 < -+- < sy, with
sy >y forall i =1,2,...,n. Thus, we have the J intervals
©, s1], (51,521, ..., (s7-1,5s], and we assume that the hazard
for F(y) is equal to A; for the jth interval, j = 1,2,...,J,
leading to

j=1
F*(ylM)=1- CXP"‘M(}’ —5j-1)— Z:Ag(sg —Sg—1) {»
g=1
4.5)
where A = (A1,...,As)’. We note that, when J = 1, F*(y|A1)
reduces to the parametric exponential model. With this assump-
tion the complete data likelihood can be written as

L(B,r|D)

n J
n]—[exp[—(Ni = V)i [)»j()’i = $j-1)
i=1j=1

j-1
+) Al —sg_l)} ]
g=I

n J

< [TTTaviap eXP{—wvu [M i = sj-1)

i=1j=1

j-1

+ Zkg(sg —sg_l):l ]

g=1

x exp[ Z [Nix;B —log(N;!) — exp(x;B)] ] , (4.6)

i=1

where v;; = 1 if the ith subject failed or was censored in the jth

interval, and 0 otherwise. The model in (4.6) is a semiparamet-
ric version of (4.2) in which the degree of the nonparametricity
is controlled by J. Because the estimation of the cure rate pa-
rameter 6 could be highly affected by the nonparametric nature
of F*(y|), it may be desirable to choose small to moderate
values of J for cure rate modeling. In practice, we recommend
doing analyses for several values of J to see the sensitivity of
the posterior estimates of the regression coefficients. The semi-
parametric cure rate model (4.6) is quite flexible, as it allows
us to model general shapes of the hazard function, as well as
choose the degree of parametricity in F*(y|A) through suitable
choices of J. Again, because N is not observed, the observed
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data likelihood, L(B, A|Dgbs), is obtained by summing out N
from (4.6) as in the previous section. Also, power priors for this
model can be constructed in a similar fashion as in the previ-
ous section. We refer the reader to Ibrahim et al. (2001a), Chen
et al. (2001), and Chen and Ibrahim (2001) for more details.

4.3 An Alternative Semiparametric Cure Rate Model

A crucial issue with cure rate modeling, and semiparamet-
ric survival models in general, is the behavior of the model
in the right tail of the survival distribution. In these models
there are typically few subjects at risk in the tail of the sur-
vival curve after sufficient follow-up; therefore, estimation of
the cure rate can be quite sensitive to the choice of the semi-
parametric model. Thus, there is a need to carefully model the
right tail of the survival curve and allow the model to be more
parametric in the tail, while also allowing the model to be non-
parametric in other parts of the curve. Ibrahim, Chen, and Sinha
(2001b) constructed such a model by defining a smoothing
parameter k, 0 < k < 1, that controls the degree of parametric-
ity in the right tail of the survival curve and does not depend
on the data. Specifically, the prior for A; depends on «, such
that the model converges to a parametric model in the right tail
of the survival curve as j — 00. By an appropriate choice of «,
one can choose a fully nonparametric model or a fully para-
metric model for the right tail of the survival distribution. Also,
« will allow some control over the degree of parametricity in the
beginning and middle part of the survival distribution. A more
parametric shape of the model in the right tail facilitates more
stable and precise estimates of the parameters. This approach
is fundamentally very different from previous approaches for
semiparametric Bayesian survival analysis, which primarily fo-
cus on specifying a prior process with a mean function and pos-
sibly a smoothing parameter, in which the posterior properties
of both of them depend on the data.

Let Fo(t|¥) denote the parametric survival model chosen
for the right tail of the survival curve and let Ho(¢) denote the
corresponding cumulative baseline hazard function. Now take
the A j’s to be independenta priori, each having a gamma prior
distribution with mean

ni=EQjl¥o) =

Hy(sj) — Ho(sj-1)
S —Sj_l ’

4.7)

and variance
o = Var(hj ¥, k) = pjk, “.8)

where 0 < k < 1 is the smoothing parameter. As ¥ — 0,
ajz — 0, so that small values of k¥ imply a more parametric
model in the right tail. In addition, as j — o0, af — 0, im-
plying that the degree of parametricity is increased at a rate
governed by k as the number of intervals increases. This prop-
erty also implies that, as j — oo, the survival distributionin the
right tail becomes more parametric regardless of any fixed value
of . The properties of this model are attractive. For exam-
ple, if Fo(:|¥¢) is an exponentialdistribution, then Fo(y|¥o) =
1 — exp(—¥0y), so that 1 = Yo and o7 = Yok /. If Fo(-I¢)
is a Weibull distribution, then Fo(y|¥g) = 1 — exp(—yoy®?),
¥ = (20, Y0), so that
(1 21
(sj() - sjﬂ 1)

2
pj=yo———— and o=
§j —S8j—1

% __ Qo
(s; Sj_l)xf.

§j—8j~1
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Several properties of this model are now given, which are
provedin Ibrahim et al. (2001a,b).

Property 4.1. Assume that (s;+sj-1)/2 — t as §j —
sj—1 = 0. Then, for any j, according to this prior process,

E(Ajl¥g) = ho(?) as s — sj—1 = 0, where ho(t) = 4 Ho(?).

For example, if Fo(ylyo) = 1 — exp(—yoy), then
E(Ajl¥0) = o regardless of the choice of s1,52,...,5/. If
Fo(yl¥o) = 1 — exp(—yoy™), then E(A;|¥g) — yoorgr®0~!
as sj — §j—1 — 0. This assures that, as j becomes large and
sj — sj~1 — 0, this prior process approximates any prior
process with prior mean ko(¢) defined on the progression time
hazard A*(t|A) correspondingto (4.5).

Property 4.2. Let F,(y[\) = exp(—~6F*(y|A)). Then

F,00) — FpOl¥o) as « — 0, where Fp(yl¥g) =
exp(—0 Fo(y|¥ o).

Property 4.3. Let f*(y|L) = Hd—yF*(yll) and let h;(yll) =
0f*(y|L.) denote the corresponding hazard function. Then
(1) = 6fo(yl¥g) as « — 0, where fo(yl¥o) =

T FoI¥).

We now give joint prior specifications for the semiparametric
model in (4.7) and (4.8). We specify a hierarchical model and
first consider a joint (improper) noninformative prior distribu-
tion for (B, A, ¥ ), given by

(B, A ¥o) =BT A Yo)m(¥o)

J
x n(ﬂ)[ I1 n(x,-wro)]n(wo). 4.9)
j=1

We take each m(X;|¥) to be independent gamma densities
with mean @ and variance af. If Fo(-|¥o) is an exponential
distribution, then ¥ is a scalar, and we specify a gamma prior
for it; that is, 7 (¥g) o 1//3"_1 exp(—to¥o), where &g and g are
specified hyperparameters.If Fo(:[¥) is a Weibull distribution,
then ¥y = (@0, yo)'. In this case we take a prior of the form

n(¥o) =7 (a0, v0)
Lo -1 §; -1

xag® exp(—Ta®@0)¥, "  exp(—Ty o), (4.10)
where Lo, Toy, {y,» and 7y, are specified hyperparameters. For
B we consider a uniform improper prior. Ibrahim et al. (2001a,
2001b) established conditions for the propriety of the joint pos-
terior distribution of (8, A, ¥¢), when using an exponentialdis-
tribution or a Weibull distribution for Fo(:|¥o). In addition,
they developed the power prior for this model.

4.4 Multivariate Cure Rate Model

It is often of interest to jointly model several types of fail-
ure time random variables in survival analysis, such as time to
cancer relapse at two different organs, times to cancer relapse
and death, times to first and second infection, and so forth. In
addition, these random variables typically have joint and mar-
ginal survival curves that “plateau” beyond a certain period of
follow-up; therefore, it is of great importance in these situations
to develop a joint cure rate model for inference. There does
not appear to be a natural multivariate extension of the mix-
ture model in (1.2). Even if such an extension were available, it
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appears that a multivariate mixture model would be extremely
cumbersome to work with from a theoretical and computational
perspective. As an alternative to a direct multivariate extension
of (1.2), Chen, Ibrahim, and Sinha (2001) proposed a multi-
variate generalization of (4.1), called the multivariate cure rate
model. This model proves to be quite useful for modeling mul-
tivariate data in which the joint failure time random variables
have a surviving fraction and each marginal failure time ran-
dom variable also has a surviving fraction. To induce the cor-
relation structure between the failure times, Chen et al. (2001)
introduceda frailty term (Clayton 1978; Hougaard 1986; Oakes
1989), which is assumed to have a positive stable distribution.
A positive stable frailty results in a conditional proportional
hazards structure (i.e., given the unobserved frailty). Thus, the
marginal and conditional hazards of each component have a
proportional hazards structure and remain in the same class of
univariate cure rate models.

For clarity and ease of exposition, we will focus our discus-
sion on the bivariate cure rate model, as extensionsto the gen-
eral multivariate case are quite straightforward. The bivariate
cure rate model of Chen et al. (2001) can be derived as follows.
Let Y = (Y1, Y2)' be a bivariate failure time, such as Y1 = time
to cancer relapse and Y, = time to death, or Y} = time to first
infection and Y2 = time to second infection, and so forth. We
assume that (Y1, Y2) are not ordered and have support on the
upper orthant of the plane. For an arbitrary patient in the pop-
ulation, let N = (N, N3)’ denote latent (unobserved) variables
for (Y1, Y2), respectively. We assume throughoutthat Ny has a
Poisson distribution with mean 6w, k = 1, 2, and (N1, N3) are
independent, given w. The quantity w is a frailty component in
the model that induces a correlation between the latent variables
(N1, N2). Here we take w to have a positive stable distribution
indexed by the parameter ¢, denotedby w ~ S (1, 1, 0), where
0 < a < 1 (see Chen et al. 2001 for more details). Although
several choices can be made for the distribution of w, the posi-
tive stable distribution is quite attractive, common, and flexible
in the multivariate survival setting. In addition, it will yield sev-
eral desirable properties.

Let Z; = (Zy;, Z2;)' denote the bivariate progression time for
the ith clonogenic cell. The random vectors Z;, i = 1,2,...,
are assumed to be independent and identically distributed. The
cumulative distribution function of Zy; is denoted by Fi(t) =
1=Fx@®, k=1,2, and F; is independent of (Ny, N2). The
observed survival time can be defined by the random variable
Yy = min{Zy;,0 <i < Ni}, where P(Zyp =00) =1 and N
is independent of the sequence Zk1, Zy2, ..., fork =1,2. The
survival function for Y = (¥}, ¥2)’, given w, and hence the sur-
vival function for the population, given w, is given by

Fpop()’l, y2lw)
2

=[] [PV =0)+ P(Zt1 > ya - -, Zkn > Yk, Ni 2 1)]
k=1

2 o)
— 0,)"
= [exp(—ka)+ ( E Fir(yn)' (wrf) eXP(—wi’i'k)>:|
| !

k r=1

1l

e

exp{—wbk + wFr(n)}
k

=exp{—w[6i Fi(y1) + 62F2(y2)]}. @.11)
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where P(Ny = 0) = P(Yy = 00) = exp(—6k), k = 1,2. The
frailty variable w serves a dual purpose in the model—it in-
duces the correlation between Y1 and Y> and at the same time
relaxes the Poisson assumption of N1 and Nz by adding the
same extra Poisson variation through their respective means
61w and Ghw.

The Laplace transform of w is given by E(exp(—sw)) =
exp(—s?). Using the Laplace transform of w, a straightforward
derivation yields the unconditionalsurvival function

Foop1, y2) =exp{ =[0I Fi ) + 2 Fa)]* ). (4.12)

It can be shown that (4.12) has a proportional hazards struc-
ture if the covariates enter the model through (61, 62). The joint
cure fraction implied by (4.12) is F pop(00, 00) = exp(—[6) +
621%). From (4.12) the marginal survival functions are Fi »=
exp(—67 (Fr(y))*), k = 1, 2. Equation (4.12) indicates that the
marginal survival functions have a cure rate structure with
probability of cure exp(—6y) for Yy, k = 1,2, It is impor-
tant to note in (4.12) that each marginal survival function
has a proportional hazards structure as long as the covari-
ates, X, only enter through 6. The marginal hazard function
is given by aff fk(y)(Fk(y))"‘“l, with attenuated covariate
effect (Bx(x))*, and fi(y) is the survival density correspond-
ing to Fx(y). This property is similar to the earlier observa-
tions made by Oakes (1989) for the ordinary bivariate stable
frailty survival model. The parameter o, 0 < @ < 1, is a scalar
parameter that is a measure of association between (Y1, ¥2).
Small values of ¢ indicate high association between (Y1, ¥2).
As a — 1 this implies less association between (¥, ¥2), which
can be seen from (4.12). Following Clayton (1978) and Oakes
(1989), we can compute a local measure of dependence, de-
noted 6*(y1, y2), as a function of «. For the multivariate cure
rate model in (4.12), 6*(t1, £2) is well defined and is given by

0*(yi, y2) =@~ 1 — ) (01 Fi(1) + 62 Fa(32)) ™" + 1. (4.13)

We see that 6*(y1, ¥2) in (4.13) decreases in (y;, y2). That is,
the association between (Y7, Y3) is greater when (Y1, Y3) are
small and the association decreases over time. Such a prop-
erty is desirable, for example, when Y] denotes time to relapse
and Y, denotes time to death. Finally, we mention that a global
measure of dependence such as Kendall’s T or the Pearson cor-
relation coefficient is not well defined for the multivariate cure
rate model (4.12) because no moments for cure rate models ex-
ist due to the improper survival function.

The likelihood function for this model based on n subjects
can be written as

L@®.¥|D)

2 n
= (l—[ [TFeGuil g )N (Nkifk(ykiliﬁk))w)
k=1i=1

x exP{Z(Nki log(w;6k) — log(Ni:i!) — w,-ek)], (4.14)
i=1

where ¥ = (¥, ¥3), & = (81,62), Ni; is the number of
clonogens for the ith subject, and fi(yk:|¥;) is the den-
sity corresponding to Fr(yxi|¥y), i = 1,...,n, k = 1,2,
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Chen et al. (2001) used a Weibull density for fx (kil¥y), so
that fi(y1¥:) = & y% T exp{Ax — y* exp(he)}, where ¥ =
(&, M), k = 1, 2. To construct the likelihood function of the ob-
served data, we integrate (4.14) with respect to (N, w) assuming
an Sy (1, 1, 0) density for each w;, denoted by f; (w;|a), where

N= (MNi,...,Nin, Nap, ..., No») and w = (wy, ..., wy). As
before we incorporate covariates for the cure rate model (4.12)
through the cure rate parameter 8. Let x§ = (Xi1, Xi2y .. s Xip)

denote the p x 1 vector of covariates for the ith subject and
let By = (Bk1, Bk, ---» Bkp)' denote the corresponding vec-
tor of regression coefficients for failure time random vari-
able Y, k = 1,2. We relate @ to the covariates by 6 =
6(x;B;) = exp(x; ), so that the cure rate for subject i is
exp(—6ki) = exp(—exp(x;B;)) fori =1,2,...,nandk=1,2.
Letting B8 = (B8/, B5)’, Chen et al. (2001) showed that the ob-
served data likelihood of (8, ¥, @) can be written as

L(B,¥,a|Dobs)

2 2 n
= (a"'+d2 TT11 exp(x;ﬁk)) [l—[ [1# (ykilw)“""]

k=1ieD; k=1i=1

x l_”[exp(xﬁﬂl)Fl()’uI'/'l)
i=1

-1 i ;
+ exp(x, B2) Fa(yail¥) ] @™+ )]

n 1_
"n[ a[exp(xﬁﬂl)Fl(Ylil%)

o

Vii Vi
+exp(x;B) 2 (n2il¥) ™" + 1 ]
« [Texp{~(exoxiBnFiomilw )
i=1

+exp B R0u¥) ], @15)

where Dy consists of those patients who failed according to
Yk’ k= ]921 DObS = (nv y1,y2,X, vl;v2), X is tﬁe nx p ma-
trix of covariates, fi(yxil¥;) is Weibull, and Fy(ykil¥y) =
exp(~yg; exp(i)).

Chen et al. (2001) considered a joint improper prior for

B, ¥.0)= (B, B2, ¥, ¥, @) of the form
(B, ¥.a)=n(B,B2 V1, ¥2 )
xaPIr@)I0<a<l)

2
= ]—[n({-'k, MIO0<a<1),
k=1

where I(0 <a <1)=11if 0 <o < 1, and 0 otherwise. This
prior implies that 8, ¥, and « are independenta priori, (81, B7)
are independent a priori with an improper uniform prior, o has
a proper uniform prior over the interval (0, 1), and (¥, ¥,)
are independent and identically distributed as w (¥ ;) a priori.
Chen et al. (2001) assumed that 7 (&, Ax) = 7 (§x|vo, T0) T (Ak),
where

7 (&k180, o) o £0 " exp{— o)} and 7 (Ak) o exp(—cori),
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and 89, 0, and cp are specified hyperparameters. Chen et al.
(2001) and Ibrahim et al. (2001a) gave a detailed discussion of
the computationalimplementation of this model.

Detailed real data examples for the models discussed in Sec-
tions 4.1-4.3 can be found in Ibrahim et al. (2001a). The Gibbs
sampler was used to obtained posterior estimates for all mod-
els discussed in this section. Details of the Gibbs sampling al-
gorithms and covergence diagnostics can be found in Ibrahim
et al. (2001).

5. FUTURE RESEARCH

Future areas of research include expanding the Bayesian
model to include covariates in 8 as well as F(¢). Although not
investigated here, this appears to be a natural extension of the
Bayesian model presented in Section 4. A more general regres-
sion model is currently being investigated. The results reported
in Section 3 from the frequentist perspective also encourage this
research effort.

The class of models given by expression (1.8) in Section 1
opens a new avenue in parametric (and probably semiparamet-
ric; see Section 3) survival regression. For example, by incorpo-
rating a predictor into the parameter i we obtain a proportional
hazards (PH) model. The quantity i is unobservable, but it is
reasonable to assume that i is proportional to the observable
tumor volume. If one predictor is incorporated into the parame-
ter i whereas another covariate (e.g., fractional radiation dose)
is incorporated into some other parameter(s) of the model, the
resulting regression counterpart of (1.8) will no longer be the
PH model. From a statistical viewpoint the main advantage of
this generalization of the clonal model of tumor recurrence is
that it can suggest the structure of new regression models to be
further explored by statistical methods. Such models may pro-
vide a useful means of searching for better regimens for frac-
tionated radiotherapy.

Another promising idea is to explore possible links between
stochastic models proposed for the natural history of cancer and
for posttreatment cancer survival; this approach can enrich sta-
tistical inference by supplementingthe analysis of patients’ sur-
vival with additional epidemiological data on cancer detection.
We believe that this idea may dramatically change the whole
concept of modern parametric survival analysis, by invoking
mechanistically motivated models for the joint distribution of
covariates at the time of diagnosis.

Methods for model diagnostics especially designed for the
semiparametric models in Section 3 remain a very important
issue for future methodological research. The same is equally
true for the regression counterparts of the two-component mix-
ture model. Justification of asymptotic properties of the esti-
mate represent a serious challenge.

6. SOFTWARE AND DATA ANALYSIS FOR
CURE RATE MODELS

Prototype software implementing the estimation procedures
of Section 3.2 was programmed in Delphi 6.0 for Windows
95/98/2000/XP, an object-oriented visual development en-
vironment based on the Pascal programming language by
INPRISE™. This software is available on request from Alex
Tsodikov. Implementation of these methods in high-level lan-
guages such as R, S, or SAS appears straightforward. In addi-
tion, Extensive BUGS software is available for the cure rate and
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otherrelated models given in the book by Ibrahim et al. (2001a).
This software can be easily downloaded from the book’s Web
site at http:/iwww.merlot.uconn.edummhchen/survbook. BUGS
code for several models and datasets is available from this Web
site.

In the semiparametric context a cure model can be regarded
as a convenient reparameterization of its counterpart in the
noncure form [compare the traditional form of the PH model

G =TF° with its cure form (3.1)]. A display of the Kaplan—
Meier estimator for the data may indicate a noncure situation if
the curves go to 0 at the end of follow-up. Fitting a cure form
model to such data may result in numerical instability as the pa-
rameter coding the cure rate would be approaching the border
of the parametric space.

Departures from proportionality and an indication for the
extended hazard models can be explored using an empirical
display of the function F (2.4) or its more sophisticated ver-
sions as discussed in Section 2. Similar techniques for model
exploration is available for two-component mixture models
(Tsodikov 2002). More work is needed to create a toolbox of
methods for model building, choice and diagnostics.

7. BIBLIOGRAPHICAL NOTES

Over recent years the BCH model has been developed in
many different directions. In particular, the literature on para-
metric inference based on this model is quite voluminous.
The usual practice is to use the two-parameter gamma or the
Weibull distribution for the function F(¢) in formula (1.4).
Maximum likelihood inference without covariates has been
discussed in the context of right-censored data under con-
tinuous follow-up (Asselain, Fourquet, Hoang, Myasnikova,
and Yakovlev 1994; Hoang, Tsodikov, Yakovlev, and Asselain
1995; Yakovlev 1996; Yakovlev and Tsodikov 1996); discrete
surveillance design (Tsodikov, Asselain, Fourquet, Hoang,
and Yakovlev 1995), and doubly censored data (Kruglikov,
Pilipenko, Tsodikov, and Yakovlev 1997). A version of the
Hjort goodness-of-fit test for the model (1.4) with F(¢) rep-
resented by the gamma distribution was described in Gregori
et al. (2002). Tsodikov (1998a) studied the asymptotic effi-
ciency of cure rate estimation. Some limiting distributions as-
sociated with model (4.1) and their bivariate counterparts were
described in the articles by Klebanov, Rachev, and Yakovlev
(1993a) and Rachev, Wu, and Yakovlev (1995); the authors
also provided estimates of the convergence rates. Parametric
and semiparametric regression models allowing for dissimilar
effects of covariates on the probability of cure and the tim-
ing of the event of interest were extensively explored in sev-
eral publications (Asselain, Fourquet, Hoang, Tsodikov, and
Yakovlev 1996; Tsodikov et al. 1998b; Myasnikova, Asse-
lain, and Yakovlev 2000; Tsodikov 2002). An improper pro-
portional hazards model was studied by Tsodikov (1998a,b)
and Chen and Ibrahim (2001). Time-dependent risk factors
for the cure probability were introduced in Tsodikov et al.
(1997, 1998b) and Tsodikov and Miiller (1998). Two-sample
score tests for long-term and short-term effects on survival
were proposed by Broét et al. (2001). Statistical inference from
the Bayesian prospective was discussed by Klebanov, Rachey,
and Yakovlev (1993b), Chen et al. (1999, 2001), Ibrahim and
Chen (2000), Ibrahim et al. (2001a,b), and Chen, Ibrahim, and
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Lipsitz, (2002). Ibrahim et al. (2001a) devoted an entire chap-
ter (chap. 5) to the cure rate model and its applications in their
book. Moreover, recent books discussing Gibbs sampling for
this model and related models are also given in Ibrahim et al.
(2001a) and Chen, Shao, and Ibrahim (2000). The model has
successfully been applied to various datasets on cancer survival
(Yakovlev et al. 1993; Asselain et al. 1994, 1996; Yakovlev
1996; Yakovlev and Tsodikov 1996; Tsodikov et al. 1995,
1997; Tsodikov 1998a, Tsodikov et al. 1998b; Chen et al.
1999; Yakovlev et al. 1999; Myasnikova et al. 2000; Trelford,
Tsodikov, and Yakovlev 2001; Tsodikov 2001, 2002; Tsodikov,
Dicello, Zaider, Zorin, and Yakovlev 2001; Zaider et al. 2001;
Zorin, Tsodikov, Zharinov, and Yakovlev 2001).

[Received July 2002, Revised June 2003.]
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Abstract: The bounded cumulative hazard model is a generalization of the
proportional hazard model with several distinct advantages:(1) It has superior
flexibility, allowing a fit to data where the the proportional hazards assumption
does not apply; (2) It has a form that is suitable for semiparametric inference;
and (3) It may offer an interpretation in terms of biologically meaningful pa-
rameters. In this paper the bounded cumulative hazard model is discussed.
Several versions of the model are applied to breast cancer recurrence data from
the Curie Institute.
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1.1 Introduction

In many clinical and epidemiological settings, investigators encounter cause-
specific survival curves that tend to level off at a value strictly greater than zero
as time increases. This plateau may be taken as an indication of the presence of
a proportion of patients for whom the disease under study will never recur. One
can consider such patients to be effectively cured. The probability of (biological)
cure, variously referred to as the cure rate or the surviving fraction, is defined as
an asymptotic value of the survival function G(t) as t tends to infinity. Let X be
the survival time with cumulative distribution function (c.d.f.) G(t) = 1-G(¢).

The existence of a non-zero surviving fraction, p, is determined by the be-
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havior of the hazard function, A(¢), by virtue of the equality
(e e]
p= lim G(t) = exp {~/z\(u)du} . (1.1)
t—o0 2

Whenever p > 0 (the integral in (1.1) converges), the underlying survival time
distribution is said to be improper. Clearly, AM(u) — 0 as u = oo if p > 0 and
the limit of A(u) (as u — 00) exists.

Boag (1949) and later Berkson and Gage (1952) proposed a two-component
(binary) mixture model for the analysis of survival data when a proportion of
patients is cured. Since then, the binary mixture-based approach has become
the dominant one in the literature on cure models (Miller, 1981; Maller and
Zhou, 1996). The main idea behind this approach is that any improper survival
function can be represented as

G(t) =E{[Go®)" } = p+ (1~ p)Go(t) (1.2)

where M is a binary random variable taking on the values of 0 and 1 with
probability p and 1 — p, respectively, with

p = Pr{X = oo},

and Gg(t) is defined as the survival function for the time to failure conditional
upon ultimate failure, i.e.

Go(t) = Pr{X > t|X < oo} (1.3)

An alternative, but equally general, representation of an improper survival
time distribution can be obtained by assuming that the cumulative hazard
Alt) = f(f A(t)dt has a finite positive limit, say 6, as ¢ tends to infinity. In this
case, one can write

Git)=e 7O, 9>0, t>0, (1.4)

where F(t) = A(t)/6 is the c.d.f. of some non-negative random variable such
that F(0) = 0. In what follows, we will call the model given by (1.4) the
bounded cumulative hazard (BCH) model.

Clearly, estimating the proportion of cured patients may have important
medical implications. In addition, clinical covariates may exert dissimilar effects
on the probability of cure and the timing of tumor relapse or other events of
interest. There are at least two advantages of the BCH model: (1) they enrich
our ability to interpret survival analysis in terms of characteristics that have
a clear biomedical meaning; (2) they lead to more general regression models,
thereby extending our ability to describe actual data. It took a long time to
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realize these virtues of the BCH model. The first move in this direction was
due to Haybittle (1959, 1965). The author proceeded from the observation that
in some clinical data on cancer survival, an actuarial estimate of the hazard
function tends to decrease exponentially with time. If the same property holds
for the true hazard, expression (1.4) assumes the form:

Gt) =e 0= o0, (1.5)

A comprehensive treatment of this model was given by Cantor and Shuster
(1992). Clearly, the Gompertz-like model given by formula (1.5) is a special
case of formula (1.4) with the function F(t) specified by an exponential c.d.f.
with parameter a.

The representation (1.4) for the BCH model was first introduced in the
paper of Yakovlev et al. (1993) and discussed later as an alternative to the bi-
nary mixture model by Yakovlev (1994). Interestingly enough, Yakovlev et al.
(1993) proceeded from purely biological considerations; the idea of imposing a
constraint on the behavior of the hazard function was introduced much later
in Tsodikov et al. (1998). In fact, the authors proposed a simple mechanisti-
cally motivated model of tumor recurrence yielding an improper survival time
distribution. Under this model, the probability of tumor cure is defined as the
probability of no clonogenic tumor cells surviving by the end of treatment. A
comprehensive account of the BCH model and associated statistical methods is
given by Tsodikov, Ibrahim, and Yakovlev (2003).

In this paper, we discuss methods of semiparametric inference based on the
BCH model that have been recently developed. We then illustrate the method
by applying several (semiparametric and parametric) versions of the BCH model
to breast cancer recurrence data from the Curie Institute.

1.2 BCH Regression Models

1.2.1 Mixture Models and Generalizations

In this subsection we discuss how certain BCM models, and in particular, the
double proportional hazards model, arise naturally within a more general class
of regression models, called Nonlinear Transformation Models.

Perhaps the simplest bounded cumulative hazard model is obtained by mak-
ing the assumption that the cumulative hazard is bounded in a proportional
hazards (PH) model. In this way we obtain the so-called improper PH model

G(tlz) = exp{~0(B, 2)F(t)}, (1.6)

where 3 is a vector of regression coefficients, and z is a vector of covariates,
and —6(f,z) is a fixed (known) function relating S to z. A general class of
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regression models, Nonlinear Transformation Models (NTM), was proposed in
Tsodikov (2002,2003), in the context of semiparametric models:

G(tlz) = v(F ()18, 2), (1.7)

where v(z|3, z) is some parametrically specified cumulative distribution func-
tion in z with support on [0,1]. In the examples we assume < is parametrized
through a set of parameters/predictors 6,7, ..., where each predictor is further
parametrized using (generally different) sets of regression coefficients i, B2, ...,
so that 8 = exp{f]z},n = exp{B32}. Linear transformation models consid-
ered by Cheng et al. (1995) represent a subclass of NTM. In order to make
(1.7) a BCH model, the following assumptions are made to enforce the limit
G(t|B,2) = p > 0 B

1018,2) > 0, lim F(t) =0, (18)

The restriction F(last failure) = 0 proposed by Taylor (1995) in the context
of the two-component mixture model removes the over-parameterization of the
description of the baseline cure rate through F and h. Following the restric-
tion, the estimate F is assumed to satisfy F(last failure) = 0. Moreover, it is
necessary for separation of the long- and short-term covariate effects on survival.
Alternatively, a BCH model can be formulated as a two-stage model. First,
an unobservable random variable M is postulated with distribution p(m|z) that
depends on covariates. Second, the observed survival function is formed as

G(t|8,z) =E [F(t)M} 7], (1.9)

where the expectation is taken with respect to M given z, and the distribution
of M depends on § and z . The model (1.9) represents a generalized PH frailty
model, which we simply call the PH mixture model (Tsodikov,2002; 2003),
where M is assumed to be an arbitrary non-negative random variable. In this
context, M can be interpreted as a missing covariate in a PH model. Since
all models considered previously in this paper are particular cases of (1.9), an
estimation procedure designed for the PH mixture model represents a universal
tool for statistical inference with such models.

The discrete mixture model (i.e. (1.9) with a discrete random variable M)
can be linked to the NTM class. Observe that the probability generating func-
tion of a discrete random variable M

(e}

em(@) =) pma™

m=0

is a distribution function in z with the support [0,1]. Indeed, since py, is non-
negative, ppr(z) is increasing in z. Also, ppm(1l) = Yoo opm = 1. If M is
discrete and depends on covariates, (1.9) can be rewritten as an NTM with

(z]2) = pm(zl2).
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With the discrete mixture model, the probability of cure is given by v(0|z) =
©m (0|8, 2) = po(B; 2)-

We can now represent both mixture and BCH models discussed earlier in this
paper as members of the Mixture - NTM model family. Consider an extension
of the improper PH model allowing for dissimilar covariate effects on long- and
short-term survival. To construct an extended hazard model (the term was
introduced by Etezadi-Amoli and Ciampi (1987)), we employ the fact that Fis
a survival function. Incorporating covariates into F, we can add a short-term
effect to the improper PH model. The class of extended hazard models

G(t18, 2) = exp {~6(B1, 2)[1 = A(F(t)|B2, 2)]} , (1.10)

where 4 is an NTM, 8 = (61, 82), B; = (Bos, B1s, ---),t = 1,2 was introduced in
Tsodikov (2002). If 4 is a mixture model itself, then (1.10) is also a mixture
model with v = exp{—60[1 — 4]}. The mixing variable M that generates the
family (1.10) has a well defined structure of the compound Poisson variable

M=% g, (1.11)
k=1

where v is a Poisson random variable, and & are i.i.d. copies of a random
variable ¢ with Laplace transform 4(e*). The binary distribution for v gives
rise to the two-component mixture class of models

G(t|8, z) = p(B1, z) + (b1, 2)F[F ()82, 2], = 1 — p. (1.12)

Kuk and Chen (1992) proposed a regression model in the form of (1.12) with p
being a logistic regression, and 4 a proportional hazards regression. This model
was further studied by Sy and Taylor (2000) and Peng and Dear (2000). The
Poisson distribution for v leads to the bounded hazard family of mixture models.
For example, let £ be degenerate (nonrandom): Pr(€ = 7(z)) = 1. Then M =
n(B2, z)v, where v is Poisson with expectation 6(z). With the parametrization
0(B1, z) = exp(B12) and (B2, z) = exp(B4z), we have the PHPH model

G(t|6, 2) = exp [~ exp(B}2) {1 - Fr2 ] (1.13)

The model (1.13) was proposed by Broét et al. (2001) in the context of two
sample score tests for long- and short-term covariate effects. An intercept term
(log(cure rate)) is included in B; but not 2. With fFyg set to zero, fip may be
interpreted as the baseline log cure rate. With the exponential parametrization
of predictors ( 1.13), the baseline survival function takes the form Gy(t|fo, 2) =
exp [~ exp(B102) {1 — 7(F|0)}], where 0=(0,0, ...) and By = ((b10,0,0, ...,),0).
As in the Cox model (Cox, 1972), the regression coefficient §;;, i = 1,2, j =
1,2,... correspond to the relative effects of the covariate z;; on the long- or
short-term predictor, i = 1, 2, respectively.
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At times an extension of (1.7) may be convenient. For brevity, we describe
the extension only for the case we need later. Let F; and Fj be two (usually
parametrically specified) survival functions. Consider the model

G(t|8,z) = exp [~ exp(Bi2) {1 — F1} — exp(B32) {1 — F2}]. (1.14)

Models of this type are called competing risks models, since F; and F, may
clearly be interpreted as the c.d.f’s for competing causes of failure. If we stip-
ulate that the means py and pg of the corresponding c.d.f’s Fi and F; satisfy
p1 < po, then 67 and 6 may be interpreted in terms short-term and long-term
effects, respectively. In this way we have can form a very different model from
the PHPH model with a similar interpretation. Note that if we impose the pair
of restrictions Hm;_,e0 F1(t) = 0, and limy—o0 F2(t) = 0, the cumulative hazard
is bounded, so that (1.14) is in the class of models (1.4), with § = 6, + 6.

1.2.2 An EM-based estimation procedure for the PH mixture
model

The issue of potentially unlimited dimension has been the most critical de-
terrent to the use of maximum likelihood estimation (MLE) in semiparamet-
ric regression models. Methods based on partial likelihood are specific to the
proportional hazards model, and do not extend to other models. The Newton-
Raphson procedure requires taking inverse of the information matrix, which gets
computationally prohibitive and unstable with increasing dimension. Charac-
terizing the future directions in survival analysis in their recent editorial in
Biometrics, Fleming and Lin (2000) pointed out that “it would be highly useful
to develop efficient and reliable numerical algorithms for the semiparametric
estimation...”.

Recently, Tsodikov (2003) generalized the EM algorithm for the frailty
model into a universal ‘distribution-free’ procedure applicable to the NTM class
(1.7). This family of algorithms (Quasi-EM) is a subclass of the so-called MM
algorithms based on surrogate objective functions (Lange, Hunter, and Yang,
2000). Broadly defined, an MM algorithm substitutes a computationally sim-
pler surrogate objective function for the target function on each step of the
procedure (similar to the E-step of the EM). Maximizing the surrogate objec-
tive function drives the target function in the correct direction. Thus, a difficult
maximization procedure is replaced by a simpler one. The idea of the QEM ap-
proach is to obtain a surrogate objective function that does not depend on the
entire distribution of the missing data, that is, the derivation of a ’distribution-
free’ E-step for the PH mixture model. The following statement is the key
result.

Proposition 1.2.1 (Tsodikov, 2003) Let T be the observed event time, and
c the observed censoring indicator (¢ = 1 for failures, and ¢ = 0 otherwise).
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Under the PH mizture model
G(t) =~[F(t)] = E{[F()M0)},

and if F'(t) > 0, the conditional expectation of M, given the observed event, is
given by
E{M(')|'7Ta C} = @[F(T)la C]a

where
v )(g])
v (z|)

and Y9(z|-) = 8*4(al-)/02*, i = 1,2 and 4 (") = ~(al-).

Olz|,c]=c+z

The above statement indicates that the E-step can be constructed using
the first two derivatives of the NTM-generating function v without any knowl-
edge or even existence of the mixing random variable M. Specification of the
algorithm for a particular model requires evaluation of © for that model.

Cure models require a correction of © at the last observation (see 1.16)
below). Introduce a set of times t;, ¢ = 1,...,n, arranged in increasing order,
where t,11 = 00. Associated with each ¢; is a set of individuals D; with covari-
ates zj;, j € D; who fail at t;, and a similar set of individuals C; with covariates
2ij, j € C; who are censored at ;.

According to the nonparametric maximum likelihood method, the model
can be fitted by maximizing the generalized loglikelihood ¢ with respect to
the regression parameters 8 and unspecified survival function F (or the cor-
responding distribution function F'). An argument similar to that adopted by
Kalbfleisch and Prentice (1980) can be used to verify that £ is maximized by a
step-function F' with steps at the times of failures. Let 7, k = 1,..., K be the
time points in ascending order where failures occur (D is not empty). Denote
by 7 the rank of 7 in the set {¢;}. The ranks r locate the points 74 on the
net {t;}: 7 = t,. By definition we set 741 =n+1 and 79 = 0. For any A(t)
let A; = A(t;).

Differentiating the generalized loglikelihood with respect to AHy, = Hj —
H, 1, k=1,...,7k_1, we obtain the score equations for F' in the form

_ Dk
Yijer, ©(FilB, 2i5)’

AH, (1.15)

where Ry = Uiy ’D; U C; is the risk set at tg, Dy is the number of failures at
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ti, and

¥ (Fi]B235) i,
A

¥ (FilB.2:5) i, . i<
1+ ¥ (F3]B,2i5) B, J€Di i S TR (1.16)

7'(F7‘K_11ﬁyzij) - . .
‘Y(FrK_l|ﬂ.zz'j)-'y(0]ﬁ,z,-j)FTK—1) JEDr, i=rkK

07 ]ecz,lZ')”K

The fact that the contributions of the observations ij to the likelihood as well
as © at, or after the last failure (i > rg), are different from their counterparts
before the last failure (i < rx — 1) is due to the restriction F; = 0,i = rg,...,n
representing the fact that F is a proper survival function. The above distinction
is not made if the model is a general NTM with unrestricted F.

It is interesting to note that the score equations have the form of the Nelson-
Aalen-Breslow estimator for the PH model with the usual predictor replaced
by ©. Given 8, iterations with respect to F' can be carried out as follows:

gE: With kth-iteration F*) compute 6% for each subject.
MA: Update F using the Nelson-Aalen-Breslow estimator (1.15),

It can be shown (Tsodikov, 2003) that if ©(z,-) is a nondecreasing function of
z, or if v is a PH mixture model (a stronger assumption), then each iteration
described above improves the likelihood. Also, this assumption makes the above
procedure a member of the MM family (Lange, Hunter, and Yang, 2000), and
the convergence properties follow from the general MM theory.

There are many ways to build a particular model fitting algorithm based on
the principles above, and this depends on how the maximization with respect to
A is incorporated into the procedure. One possibility is to maximize the profile
likelihood

£pr (B) = £(8, F(B), (1.17)
with respect to 8, where I%‘(ﬁ) is determined at each step of maximization by

iterating the steps (qE) and (MA) until convergence. This method was used
for the semiparametric model used in the analysis presented below.

1.3 Analysis of Data from the Curie Institute

Two bounded cumulative hazards models, the double proportional hazards
(1.13) and the competing risks model (1.14) were applied to data from women
diagnosed with primary breast carcinoma between 1981 and 1991 at the Curie
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Institute. The endpoint of interest was recurrence in the ipsilateral breast.
Both models admit interpretation in terms of long and short term effects, so
sensitivity to model specification could be explored. In addition we used three
versions of the PHPH model, differing in the way F was specified, to explore
sensitivity to specification of F.

The general treatment policy for the Curie Institute data was aimed to-
wards breast conservation through a combined application of radiotherapy and
limited surgery. A detailed description of subcohorts of these patients is given
in Fourquet et al (1989). The strategy of the analysis was to choose important
predictors using backward elimination. Women with missing tumor size, grade,
nodal status, estrogen receptor status, progesterone receptor status, or treat-
ment information were excluded from the analysis. Women for whom grade was
coded as ‘not done’ were included however. After these exclusions, a sample of
6232 women out of an initial total of 9899 was available for analysis. The vast
majority (3278, or 89%) of the excluded patients had either missing estrogen
or progesterone receptor status, or both.

The initial model from which backward elimination proceeded included both
long- and short-term effects for all variables. The variables included were: pri-
mary tumor size at detection, estrogen and progesterone receptor status, clinical
axillary lymph node status (nodal involvement), age, and tumor size, histologi-
cal grade, and treatment. Estrogen receptor status (ER), progesterone receptor
status (PgR) and nodal involvement were taken to be indicator variables. Treat-
ment was taken to be a categorical variable with four levels: radiotherapy alone
(RT), mastectomy alone, tumorectomy plus radiotherapy, and mastectomy plus
radiotherapy. Age (in years) at diagnosis and primary tumor size (in millime-
ters) were considered as continuous covariates in this analysis. Histological
grading (Scarff Bloom) was taken as a variable with three categories (I, ITa and
ITb combined, and IIT). Tumor grade was highly correlated with stage, and, in
combination with the other covariates, was chosen preferentially over stage as
predictive of local recurrence in a preliminary analysis with all covariates. Each
of the predictors included in the backward elimination was highly significant in
univariate analysis.

The three PHPH models differed in the way in which F' was specified. Our
most flexible model used a semiparametric specification of F. We refer to this
model as the ‘semiparametric PHPH model’. Our intermediate form specified
that F be a linear spline. For our spline models we use fixed, equally spaced
knots between t = 0 and ¢ = tmaz, Where tmaez is the last failure time. F is
parametrized by the values at the (ten) knots, subject to the conditions that
F is monotone decreasing, F(0) = 1, and F(tmaz) = 0. Linear interpolation
is used between the knots to ensure continuity. We refer to this model as the
‘spline PHPH model’. The most restrictive parametric form specified that F
have a Weibull distribution. This model uses only two parameters, (a median
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and shape parameter), to specify F. We refer to this model as ‘Weibull PHPH
model’. Weibull distributions were also used for both F; and F3 of the compet-
ing risks model. A semiparametric or spline-based form of the competing risks
model was not used, as it is difficult to retain identifiability with such a model.

Estimates for semiparametric PHPH model were obtained by maximizing
the profile likelihood (1.17) using the Powell algorithm (Himmelblau, 1972), as
described in Section 1.2.2. We fit the parametric and spline PHPH models,
as well as the competing risks model, by backward elimination as well. For
these models, the complete likelihood was maximized via the Powell algorithm.
Variables with several levels were considered in blocks. Table 1.1 gives the
significance levels of variables at the step of removal or inclusion in the final
model, calculated using the likelihood ratio test. The cycle in which predictors
were removed is given for all variables not in the final model. The significance
level a = 0.05 was chosen for inclusion in the final model. Although predictors
are removed in a different order, in the end the final list of predictors selected for
the semiparametric PHPH and Weibull-based PHPH models were exactly the
same. One more short-term predictor (size) was selected as significant for for
the spline PHPH model. The competing risks model contained the additional
short-term effect of age (but no size parameters). We note that in each case,
there are highly significant short-term effects, so that the proportional hazards
assumption is easily rejected.

Parameter estimates for each of the models are provided in Table 1.2. The
parametrization for the PHPH and competing risks models are given by (1.13)
and (1.14) respectively. Note that the cure rate estimates, although comparable
to each other, apply to the extrapolated ‘baseline’ subject with age equal to
zero and tumor size equal to zero. For the cure rate model, the median for one
component, interpreted as long term, was 123 years, while the median for the
other component, labeled short term, was 23 years.

The models were generally in very good agreement. For all three PHPH
models and the competing risks model, positive progesterone receptor status
and older age all significantly increased the probability of ‘local cure’, while lack
of nodal involvement, positive estrogen receptor status, and low histological
grade significantly increased the mean time to local recurrence for uncured
patients. Interestingly, tumor size was chosen as (marginally) significant only
for the spline PHPH model. For the spline PHPH model, there was a significant
decrease in the mean time to recurrence with increasing primary tumor size. For
the competing risk model, older age had a significant short term benefit as well
as a long term benefit. The cure rate parameters were in good agreement for all
the PHPH models, but the cure rate parameter for the competing risks model
varied somewhat, perhaps because of the quite different model specification.

Treatment had both a highly significant long term and short term effect.
Compared to the ‘baseline’ group of patients receiving radiotherapy alone, every
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Model
Effect | Predictor | Semi. Spline  Weibull  Comp.
PHPH PHPH PHPH Risks
Nodes 1(0.92) 1(0.78) 2(0.88) 4 (0.18)
PrR *(0.02) *(0.02) *(0.02) *(0.01)
Long ER 4(0.23) 6(0.09) 5(0.20) 2(0.94)
Term | Histology | 5 (0.16) 5 (0.14) 6 (0.15) 1 (0.90)
Treatment | * (E-13) * (E-12) * (E-15) * (E-13)
Age * (E-13) * (E-13) * (E-13) * (1E-9)
Size 2 (0.86) 3 (0.51) 1(0.99) 3 (0.69)
Nodes * (3E-4) * (2E-4) * (1E-6) * (TE-7)
PgR 3(0.22) 4(0.19) 4(0.18) 5 (0.14)
Short ER * (BE-9) * (4E-9) * (E-10) * (1E-9)
Term | Histology | * (1E-8) * (8E-9) * (2E-9) * (7E-9)
Treatment | * (9E-5) * (5E-5) * (6E-7) * (1E-6)
Age 6 (0.12) 2(0.58) 3(0.25) * (8E-4)
Size 7(0.10) *(0.04) 7 (0.07) 6 (0.09)

Table 1.1: Step at which predictors were removed, and significance level (in
parentheses) for the three PHPH models and the competing risks model fitted
to breast cancer data using backward elimination. Predictors that were not
removed are indicated by *. The significance level applies either to the removal
step (for predictors that were eliminated by backward selection) or the final

model (for all the other predictors).
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other group of patients had a greater chance of local cure for all the models, with
those receiving mastectomy (with or without RT') having the best chance of local
cure. Curiously, according to the all the PHPH models, compared to patients
receiving only radiotherapy, patients receiving mastectomy plus radiotherapy
or mastectomy alone, and who have not been locally cured, had smaller mean
time to recurrence. On the other hand, patients who received lumpectomy plus
radiotherapy were less likely to have been cured locally than those receiving
mastectomy or mastectomy plus radiotherapy, but the mean time to recurrence
was increased. For the competing risk model mastectomy, mastectomy plus
RT, and lumpectomy + RT all had comparable beneficial effect on time to
recurrence compared to RT alone.

1.4 Discussion

Bounded cumulative hazards regression models have advantages over other
models: they are readily interpretable in terms of characteristics with biomedi-
cal meaning, and they have more flexibility than more common modeling tools,
and can be fit using semiparametic methods. These advantages have been illus-
trated by our application to the Curie Institute data, presented in the preceding
section. Even though our results appear to be in agreement with the literature,
our approach, which includes both long and short term effects, provides more
information than the typical proportional hazards modeling. From our model
we can see that estrogen receptor status, nodal involvement, and histological
grade appear to largely affect the timing of local recurrence, rather than the
probability of local cure. Age, on the other hand, has a strong effect on the
probability of local cure, and treatment on both the probability of local cure as
well as the timing of recurrence.

The results of our application of the PHPH and competing risks models
to the Curie Institute data suggest that the long and short terms effects are
largely robust to changes in model specification (from PHPH to competing risks
model) or changes in specification of time to failure distributions. In addition,
our results appear to be largely consistent with the breast cancer literature:
decreased probability of local relapse is associated with older age at onset,
negative nodes, positive estrogen receptor status, and low histological grade,
particularly after breast conserving therapy. (See, for example, McReady et al.
(1996), who analyzed breast cancer treated with lumpectomy alone). Young
age is often regarded as an important risk factor not only for local recurrence,
but distant metastasis and shorter overall survival as well (Elkhuizen et al.,
1998). Irradiation of the breast in patients receiving lumpectomy is regarded
as reducing risk of recurrence, except, perhaps, for patients at very low risk
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Model
Effect | Predictor Level Semi. Spline Weibull Comp.
PHPH PHPH PHPH Risks
PgR Negative — — — —
Positive -0.16  -0.16 -0.16 -0.25
Treatment RT — — — —
Long Mastectomy | -1.29  -1.27 -1.28 -1.26
Term RT+Lump. | -0.40 -0.38 -0.38 -0.61
RT+Mast. | -1.57  -1.57 -1.53 -1.55
Age (yrs.) (continuous) | -0.023 -0.023 -0.023  -0.026
Cure Rate 0.064 0.064 0.068 0.043
Nodes Negative e — — —
Positive 0.47 0.42 0.50 0.66
ER Negative — — — —
Positive -0.60  -0.60 -0.64 -0.81
Short | Histology Not done — — — —
Term I -0.57  -0.53 -0.64 -1.11
II -0.17  -0.13 -0.20 0.15
III 0.29 0.34 0.25 0.44
Treatment RT — — — —
Mastectomy | 0.36 0.39 0.37 -0.74
RT+Lump. | -047  -0.39 -0.52 -0.87
RT+Mast. 0.67 0.70 0.63 -0.90
Age (yrs.) (continuous) | *** ook ook -0.020
Size (mm.) (continuous) | ***  0.0049 Hokok ok

Table 1.2: Parameter estimates for each of the three versions of the PHPH
model, and the competing risks model, fit to breast cancer recurrence data
from the Curie Institute. The baseline group is indicated by —. Components

that are absent from the model are indicated by

*kk
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(Clark et al., 1996).

Association of small tumor size with decreased risk of local recurrence has
been observed in the literature. (See, for example, McGreedy, 1996, or Asselain
et al., 1996). We do not see much effect of tumor size, as size was absent from
two out of three of our final PHPH models, was only marginally significant
in the short-term component of the other models, and never appeared in the
long-term component of the models. A further exploration of this is discussed
below.

A tumor recurrence data set containing a subset of 877 patients from the
Curie Institute data was analyzed by Asselain et al. (1996) using the acceler-
ated failure time model to describe short-term covariate effects. Although re-
currence in both the ipsilateral and contralateral breast were analyzed together,
the authors state that analysis of ipsilateral recurrence alone gave similar re-
sults. The model incorporated components that could be interpreted in terms of
long-term effects (mean number of surviving clonogens) and short-term effects
(time of progression). A more limited set of covariates (age, tumor size, nodal
involvement, and treatment) was considered in this analysis. After backward
elimination, treatment, the short-term effect of tumor size, and the long-term
effects of both age and tumor size. In accordance with the analysis presented
in the previous section, age appeared to have a pronounced long-term effect,
but little effect on the time of tumor recurrence. The authors indicate that the
long-term effect of age appeared to be the predominant one.

The apparent lack of significance of tumor size in the current analysis ap-
pears to contradict the results of the Asselain et al. (1996), but it is possible
that this is due to different lists of predictors. To check whether the inclusion
of receptor status in the current analysis is responsible for the discrepancy, we
removed estrogen and progesterone receptor status from the list of predictors
and fit the semiparametric PHPH model to the data by backwards elimina-
tion. There is a significant short-term effect of tumor size when this is done
(p=0.026). There is, in addition, a significant short-term effect of age (p =
0.027), in addition to the long-term effect that was present in the extended
model. The other selected predictors are the same. We see that even after a
more similar list of predictors are included, there remains some slight discrep-
ancy between the effects of tumor size. We speculate that this discrepancy may
be caused by the inclusion of more detail on radiotherapy in the earlier analysis.
Shorter follow-up analysis and smaller sample size may also contribute to the
discrepancy.

Finally, we note that if a different endpoint is analyzed, such as cause-
specific survival or time to metastatic spread, the effect of age at onset may
be different. For example, in an analysis of survival in women diagnosed with
localized breast cancer in Utah using a similar model, with age and stage as
predictors, Tsodikov (2002) found that the long term effect of age at diagnosis
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was not significant, while the short term effect remained significant, at least for
younger patients.
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